

Работа со SCADA-системой GENESIS64: используем полезные свойства системы безопасности

Ольга Власенко

Мощный программный пакет ICONICS GENESIS64 позволяет построить полнофункциональную SCADA-систему промышленной автоматизации, включающую основные компоненты для визуализации, обработки тревог и событий, построения трендов и др. Но отличительной особенностью GENESIS64 является возможность разработки надёжной и дифференцируемой системы безопасности. Она позволяет настроить разрешения на доступ пользователей не только на вход в систему, но и на работу с отдельными тегами, объектами и приложениями.

Конфигуратор системы безопасности Security Server является частью GENESIS64, но после установки основного пакета по умолчанию конфигурация системы безопасности не активна.

Настройки безопасности для сервера устанавливаются в конфигурационных формах. Подробно с ними вы можете познакомиться в рамках учебных курсов «Новое поколение SCADA GENESIS64 (базовый курс)» [1] и «Основы работы с программным пакетом ICONICS GENESIS64 (дистанционный курс)» [2].

Администратор системы безопасности настраивает конфигурацию, добавляя пользователей и связывая их определёнными привилегиями, после этого делает конфигурацию активной.

Для каждого пользователя и группы можно установить индивидуальные права и доступ к отдельным приложениям, свойствам, тегам и т.д. (рис. 1). Эти настройки могут быть основаны на расписании.

Вопрос

Какие существуют возможности для работы с объектами на экране оператора в зависимости от настроек системы безопасности?

Ответ

Одним из полезных инструментов использования настроек системы безопасности является функция ?DataPoint: TagName, которая возвращает битовую маску доступа тега TagName: 0 (двоичный код 00) – запрет на чтение/запись; 1 (двоичный код 01) – запрет на запись; 2 (двоичный код 10) – запрет на чтение; 3 (двоичный код 11) – разрешены чтение/запись.

Рис. 1. Настройка прав доступа в конфигурации Security Server

Эта функция позволяет осуществить динамические изменения элементов на экране управления, основанные на разрешении безопасности, например, изменить цвет фона объекта на красный только при допуске тега для чтения и на зеленый для источника данных, в который пользователь может записать значение.

Для вывода маски доступа в виде тега на экране оператора в поле *DataSource* (Источник данных) объекта ProcessPoint (Точка процесса) достаточно к имени ОРС-тега прописать префикс ?DataPoint.

Например, для OPC-тега @ICONICS. Simulator.1\SimulatePLC.Ramp.Value запись в строке источника данных будет иметь вид:

?DataPoint: @ICONICS.Simulator.1\ SimulatePLC.Ramp.Value.

На рис. 2 приведены примеры настройки доступа к этому тегу в конфигураторе Security Server (2a, 2e) и вывод маски доступа тега на экран оператора (2b, 2e). Следует учесть, что функция ?Data Point будет работать, только если приложение безопасности запущено. В противном случае будет возвращаться значение -1.

С помощью функции ?Data Point можно скрывать отдельные объекты, такие как 3D-объекты, не привязываясь к определённому тегу, а используя только политику доступа конкретного пользователя.

Рис. 2. Настройка прав доступа к тегу и вывод тега на экран оператора в GraphWorX

	Application Actions	Points	Alarms	Files	Stations	Custon
	Allow these operation	is:			Read	Write
Þ						
*						
	Chicaloppol					
*						
	optionally test the cur	rent Allov	ADeny co	onfigura	tion:	
ou can						
Enter ti	e point to test here:				Read	Write

Рис 3. Запрет доступа на чтение и запись точки CriticalObject

Данный способ использует несуществующую точку с присвоенным именем, не связанным с реальным источником данных. Например, пользователю *rusella* настроен запрет доступа на чтение и запись к несуществующей точке, которая называется *CriticalObject* (рис. 3).

Чтобы скрыть 3D-объект по разрешению точки *CriticalObject*, к 3D-элементу добавляется динамика *Hide (Скрыть)*, в которой в поле источника данных прописана функция:

Рис. 4. Использование динамики скрытия на основе настроек безопасности

Рис. 5. Добавление элемента на слой

?DataPoint: CriticalObject HideWhen: data == 0

На рис. 4 установлена динамика *Hide* на скрытие сферы, когда значение источника данных в зависимости от разрешений безопасности пользователя равно 0 (отсутствие у пользователя доступа на чтение и запись). Теперь, если войти в систему с учётной записью *rusella*, на экране оператора сфера видна не будет.

Система безопасности позволяет скрывать слои в зависимости от уровней доступа пользователей. Элементы на экране оператора размещаются по этому признаку на отдельных слоях. Например, на рис. 5 на слой *LayerPump* добавлена кнопка *Включить вентилятор*, которая будет доступна пользователю *admin* и скрыта для пользователя *operator1*. Для скрытия слоя по системе безопасности в его свойствах необходимо включить опцию *HideWhenSecurity Denied* (рис. 6).

5	Layer (LayerPump)			
	≜ ↓ 🔳 🖋 📼			
۵	Common			
	(Name)	LayerPump		
	Title			
	Description			
	DescriptionInToolTip	Default		
	CustomData			
	ShareKeyword			
	Locked	False		
	Visible	True		
4	Common - Behavior			
	IsEnabled	True		
	Focusable	False		
	IsHitTestVisible	True		
	Cursor	Default		
	IsTabStop	True		
	TabIndex	2147483647		
đ	Common - Style			
	Opacity	100%		
	Effect	None		
۵	Declutter			
	HideWhenZoomLessThan	0%		
	HideWhenZoomMoreThan	Infinity		
	HideOnZoomOrScale	ZoomOnly		
	HideWhenSecurityDenied	True		
	ReleaseDataWhenHidden	True		
۵	Layout			
	NoZoom	False		
	NoPan	False		

Рис. 6. Опция скрытия слоя по системе безопасности

Рис. 7. Запрет на слой в конфигурации безопасности

Рис. 8. Экран оператора для разных пользователей

Далее в конфигурации безопасности прописывается разрешение/запрет на слой (рис.7).

На рис. 8 приведены экраны в режиме исполнения для разных пользователей.

Вопрос

Как убрать меню и панель инструментов на экране оператора в режиме исполнения?

Ответ

Для настройки отображения экрана оператора в режиме исполнения в свойствах экрана существует опция *Specify RuntimeWindowsProperties*. При включении данной опции (значение *True*) становятся доступными для настройки свойства экрана в режиме исполнения (рис. 9).

Для отключения панели инструментов, главного и контекстного меню, строки состояния и др. выключите соответствующие свойства, выбрав значение *False*.

Вопрос

Можно ли установить пароль на определённую экранную форму, не привязываясь к разрешениям пользователей?

Ответ

Защитить паролем экранную форму можно непосредственно в свойствах экрана в GraphWorX. При наличии такого пароля вы можете открыть файл в режиме исполнения, но при попытке открыть экранную форму для разработки будет запрашиваться пароль.

Настройка пароля возможна при работе в расширенном режиме Graph-WorX64: выберите на вкладке меню View секцию Application Mode – Advanced Mode. В свойствах экранной формы на вкладке Properties будет доступно поле Password, в которое и вводится пароль (рис. 10).

Система запросит подтверждение пароля, и при повторном вводе он будет сохранён.

Теперь при открытии файла вы будете видеть окно с запросом на ввод пароля (рис. 11).

В случае если вы забыли пароль, в этом диалоговом окне вы увидите кнопку *Challenge* и сможете получить доступ к вашей экранной форме с привлечением технической поддержки.

T	SpecifyRuntimeWindowProperties	True
	RuntimeWindowProperties	
	SpecifyWindowLocation	True
	SpecifyWindowSize	True
	Specify/WindowStyle	True
	SpecifyCommandingOptions	True
	StartLocation	🐃 Manual
	Left	0%
	Тор	0%
	Width	100%
	Height	100%
	WindowState	Normal
	TitleBarVisible	True
	Text	
	ControlBox	True
	MinimizeBox	True
	MaximizeBox	True
	OuterBorder	True
	Resizable	True
	ToolWindow	False
	InnerBorder	True
	InnerBorderBrush	160; 160; 160
	InnerBorderThickness	1
	HorizontalScrollVisible	Auto
	VerticalScrollVisible	Auto
	SpecifyScrollBarColors	False
	RibbonVisible	False
	MenuVisible	False
	NavigationBarVisible	False
	StatusBarVisible	False
	ShowContextMenu	False
	TopMost	False

Рис. 9. Настройка свойств экрана в режиме исполнения

CustomViews	
Protection	
Password	
Runtime	
ZoomEnabled	True
PanEnabled	True
ScanRate	500
DesiredFrameRate	Automatic
ReleaseOutOfViewData	False
CachePriority	Nomal
ShowControlCursor	False
ShowControlFocus	True

Рис. 10. Введение пароля на экранную форму

Display Password		
Enter Display Pass	sword:	
Challenge	ОК	Cancel

Рис. 11. Запрос пароля на экранную форму при открытии

Литература

- Новое поколение SCADA GENESIS64 (базовый курс) [Электронный ресурс] // Режим доступа : https://www.prosoft.ru/ support/training/moscow/458619.html.
- Основы работы с программным пакетом ICONICS GENESIS64 (дистанционный курс) [Электронный ресурс] // Режим доступа : https://www.prosoft.ru/support/ training/moscow/616374.html.

Автор – сотрудник фирмы ПРОСОФТ Телефон: (495) 234-0636 E-mail: info@prosoft.ru

НОВОСТИ НОВОСТИ НОВОСТИ НОВОСТИ НОВОСТИ НОВОСТИ

Новости ISA

В октябре 2018 года Региональной общественной организацией содействия эффективному развитию творческой и инновационной деятельности в современном образовании «Доктрина» проводился Всероссийский конкурс обучающихся «Мой вклад в величие России». Студенты ГУАП

получили награды: А. Добровольская – золотую медаль и диплом 1 степени, И. Михайлов – серебряную медаль и диплом 2 степени. За подготовку участников награждены их научные руководители и ректор ГУАП Ю.А. Антохина.

19 ноября 2018 года в ГУАП на расширенном заседании научного семинара академика РАН, д.э.н., профессора А.Г. Аганбегяна и Российской секции ISA с докладом «Экономика знаний: частно-государственное партнёрство в области новейших технологий в здравоохранении» выступил председатель правления группы компаний ЛДЦ МИБС А.З. Столпнер. Эта крупнейшая сеть насчитывает более 90 центров с лучшим оборудованием, объединённых телемедицинской связью, в 68 городах России, клинику радиохирургии, стереотаксической радиотерапии и общей онкологии, 3 полных ПЭТ-центра. Последним достижением МИБС стало открытие в Санкт-Петербурге единственного в стране Центра протонно-лучевой терапии, оснащённого самым современным высокотехнологичным оборудованием. С 2012 года ЛДЦ МИБС ежегодно принимает более 1 300 000 пациентов. В обсуждении доклада приняли активное участие члены Российской секции ISA.

28-30 ноября в КВЦ «Экспофорум» в рамках Недели науки и профессионального образования Санкт-Петербурга прошёл Международный научно-образовательный салон. Ректор ГУАП, профессор Ю.А. Антохина представила заместителю министра науки и высшего образования М.А. Боровской выставочный стенд ГУАП с образовательными программами вуза и инновационными разработками студентов, которые являются результатом деятельности открытого акселератора, включённого в работу Инженерной школы ГУАП. Таким образом, в ГУАП реализуется проектно-ориентированная подготовка на всём цикле обучения от бакалавриата до магистратуры. Состоялась панельная дискуссия «Экспорт российского образования: вызовы времени», одним из спикеров которой стал проректор по образовательным технологиям и инновационной деятельности ГУАП, член Российской секции ISA, профессор В.Ф. Шишлаков. Он поделился с аудиторией опытом ГУАП, связанным с международными программами в аэрокосмической области.

26-30 ноября в Москве прошёл финал соревнования в рамках II Национального межвузовского чемпионата профессионального мастерства по стандартам WorldSkills, в котором приняли участие свыше 400 конкурсантов - студентов из 93 ведущих российских вузов 43 регионов страны. Были представлены 44 компетенции в семи блоках профессий. В финале студенты ГУАП завоевали золотые медали по компетенции «Интернет вешей». серебряные по компетенции «Корпоративная защита от внутренних угроз информационной безопасности» и «Инженерия космических систем», бронзовые по компетенции «Программные решения для бизнеса» и «Интернет-маркетинг». Пленарная дискуссия «Университеты компетенций: практические навыки в фокусе высшего образования» стала основным моментом деловой программы финала. Позицию инженерного образования в дискуссии представила ректор ГУАП, профессор Ю.А. Антохина. Большую работу по организации и проведению соревнований проделал главный эксперт чемпионата и менеджер компетенции «Корпоративная защита от внутренних угроз информационной безопасности», начальник управления информатизации ГУАП. член Российской секции ISA А.В. Сергеев. Участие в WorldSkills было сложным творческим испытанием, позволяющим получить опыт полноценной конкуренции в специальности и независимую оценку профессиональной квалификации.

В канун Нового года в адрес Российской секции ISA поступили многочисленные приветствия и поздравления от коллег. Секцию поздравили действующий президент ISA и пять президентов ISA разных лет, а также действующий вице-президент округа 12 и восемь вице-президентов округа 12 разных лет.

www.cta.ru

День Российского студенчества для ГУАП особое событие, ведь именно 25 января 1941 года было подписано постановление о создании этого учебного заведения. Поздравить ГУАП приехал вице-губернатор Санкт-Петербурга В.Н. Княгинин. Ректор университета Ю.А. Антохина провела для него экскурсию по корпусу вуза на Московском проспекте. Руководители научных подразделений и студенты ГУАП рассказали вице-губернатору о своих проектах, участии в соревнованиях WorldSkills, взаимодействии с технологическими и промышленными партнёрами, а также представили собственные разработки, среди которых мобильная робототехническая платформа, мини-квадрокоптеры, различные беспилотники.

28 января в штаб-квартире ISA в РФ прошло ежегодное заседание Президиума ISA РФ. На нём выступил президент секции 2018 года, директор института технологий предпринимательства ГУАП, д.э.н., к.ф.-м.н., доцент А.С. Будагов. Его деятельность на посту президента была одобрена членами Президиума. Глава представительства ISA в РФ профессор А.А. Оводенко вручил А.С. Будагову специальный знак президента секции 2018 года. С планом работы выступил президент Российской секции ISA 2019 года, директор института непрерывного и дистанционного образования ГУАП, д.т.н. С.В. Мичурин. От имени Исполкома ISA на заседании Президиума объявлены итоги выборов на пост президента-секретаря Российской секции ISA. Им стал проректор по образовательным технологиям и инновационной деятельности ГУАП, д.т.н., профессор В.Ф. Шишлаков, который вступит в должность президента секции 1 января 2020 года. Почётным дипломом ISA награждён президент Российской секции ISA 2015 года, проректор ГУАП по международной деятельности, д.э.н., доцент К.В. Лосев.

Команда студентов ГУАП «Спутник СПб» во главе с научным руководителем, активным членом Российской секции ISA, доцентом ГУАП Н.Н. Майоровым, приняла участие в зимней космической школе МГУ им. М.В. Ломоносова, в отборочной сессии 8-го Российского чемпионата «CanSat в России», проходившей с 1 по 5 февраля 2019 года. Студенты представили проект нового аппарата, который планируется запустить с помощью шара-зонда в стратосферу на высоту 30 км. Целью проекта является создание аппарата для обеспечения устойчивого функционирования замкнутой экосистемы на основании контроля химико-физических параметров, таких как температура, освещённость и кислотность жилкости.