Использование симулятора антенн для оптимизации планарных фильтров

Джеффри Кэллер (Nuhertz Technologies), **Андреас Вайн** (IMST) Перевод: Александр Акулин (akulin@pcbtech.ru)

При использовании совместно с дополнительным программным инструментом трёхмерный симулятор электромагнитного поля IMST Empire XPU, предназначенный для расчёта конструкции антенны, можно также применять и для оптимизации планарных конструкций фильтров. В статье приводится пример совместного использования Empire XPU с программой FilterSolutions.

В течение многих лет компания IMST занимается разработкой программного обеспечения для трёхмерного электромагнитного моделирования. В своём продукте Empire XPU компания IMST делает упор на разработку и оптимизацию антенн. Компания Nuhertz Technologies также разрабатывает специализированное программное обеспечение, в частности FilterSolutions, для точного трёхмерного проектирования и оптимизации планарных фильтров. Эти два продукта вполне подходят для совместного использования, что позволяет в полной мере реализовать преимущества обоих инструментов. Например, процесс оптимизации IMST Empire XPU EM можно использовать для оптимизации планарных конструкций, созданных с помощью FilterSolutions от фирмы Nuhertz.

Разработка антенн в Empire XPU

Empire XPU – это передовой 3D-симулятор электромагнитных полей, рабо-

та которого основана на применении метода конечной разности во временной области (FDTD). Данный инструмент оптимизирован для эффективного использования памяти и достижения высочайшей производительности. Его уникальное отличие от других решений заключается в применении инновационных алгоритмов программного ускорения, позволяющих использовать всю доступную оперативную память компьютера, достигая при этом производительности до 22 млрд ячеек в секунду на рабочей станции с двумя процессорами.

Программа Empire XPU позволяет решать широкий спектр задач, например рассчитывать и моделировать пассивные СВЧ-компоненты и схемы, корпуса, волноводы и ЭМС, но основное внимание уделяется антеннам всех разновидностей. Геометрия антенны и сигналы возбуждения быстро настраиваются в функциональном графическом пользовательском интерфейсе. Алгоритмы автоматического создания и оптими-

зации на экспертном уровне помогают пользователю подготовить окончательный проект. Функции визуализации помогают получить физическое представление о происходящих в системе электромагнитных волновых явлениях.

Проектирование планарных фильтров в FilterSolutions

Модуль планарного проектирования FilterSolutions позволяет быстро создавать планарные конструкции, оптимизированные на уровне схем с учётом внутренних потерь и паразитных эффектов разрыва. Панель проекта для начинающего пользователя FilterQuick является понятной и простой в использовании, предоставляя наглядную помощь для новичков. Для опытных пользователей экспертный режим панели проекта обеспечивает полный доступ ко всем возможностям программы для разработки сложных фильтров.

Проекты планарных фильтров могут быть экспортированы непосредственно в программу Етріге ХРU, включая стек, топологию и полную параметризацию, необходимые для настройки и оптимизации всех соответствующих геометрий проекта. Экспортированная конструкция полностью построена на уравнениях, поэтому изменение отдельных параметров обновляет всю геометрию проекта для сохранения согласованности всех её частей.

Hастройка Empire XPU для трёхмерного моделирования антенны

Моделирование антенны требует настройки граничных условий с учётом поглощения, а также создания пространства для реактивного ближнего поля. Етріге XPU автоматически создаёт подходящую среду в зависимости от желаемого частотного диапазона. Модель возбуждается в указанных портах с помощью импульса во временной области, охватывающего весь частотный диапазон. После симуляции распределения энергии по СВЧ-структуре модели антенны программа извлекает её S-параметры. Расставленные пользователем мониторы поля записывают значения поля для

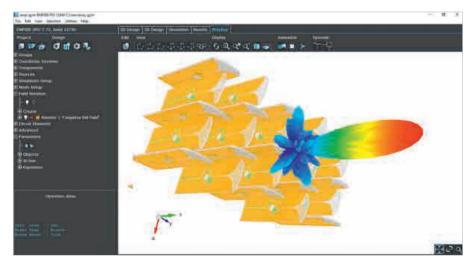


Рис. 1. Диаграмма направленности на частоте 12 ГГц для смоделированной в Empire XPU решётки Вивальди

количественного определения типичных параметров антенны, таких как усиление, ширина луча или уровни боковых лепестков. Антенные решётки могут возбуждаться с помощью заданного входного воздействия либо одновременно с постепенным нарастанием амплитуды и широкополосным фазовым сдвигом (см. рис. 1), либо последовательно для получения параметров связи.

Настройка Empire XPU для трёхмерной оптимизации антенны

Первоначальные конструкции антенн доступны в Етріге в виде встроенных шаблонов или могут быть импортированы из других САПР. Также можно создать СВЧ-структуру «с нуля» или с помощью соответствующих шаблонов и скриптов.

Геометрия и свойства материала могут быть определены как переменные, и для нахождения наилучшего набора параметров могут применяться различные алгоритмы оптимизации. При вычислении функции ошибок могут применяться различные источники и целевые функции, которые программное обеспечение впоследствии будет пытаться минимизировать. Поскольку при оптимизации требуется расчёт для множества комбинаций переменных, Етріге XPU может использовать механизмы распределённых и параллельных вычислений на удалённых серверах.

Обзор скриптов Empire XPU

Модель в Empire XPU может быть частично или полностью настроена с помощью пользовательских скриптов, написанных на языке программирования Python. Даже параметрические модели, уравнения и цели оптимизации могут быть определены скриптами, которые будут использоваться в последующем процессе оптимизации. Также можно запускать симуляции полностью в фоновом режиме как на локальном компьютере, так и на удалённых машинах. Кроме того, скрипты могут использоваться для последующей обработки полученных результатов (в этом случае они будут применяться в целевых функциях оптимизации).

Возможности FilterSolutions для разработки планарных фильтров

Программа FilterSolutions позволяет создавать множество различных топологий для плоских конструкций филь-

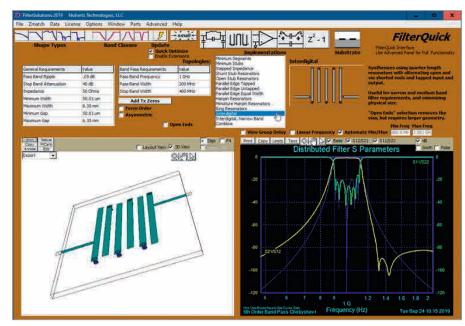


Рис. 2. Встречно-гребенчатый фильтр в панели FilterQuick

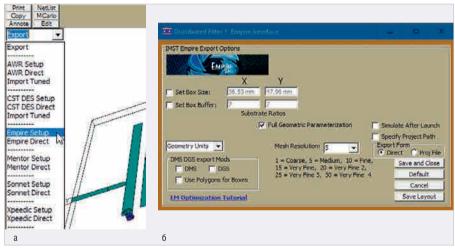


Рис. 3. Меню Export программы FilterSolutions (a) и страница экспорта (б)

тров посредством ввода требований к проекту в поля форм. Панель проекта FilterQuick представляет собой таблицы параметров топологии в удобном формате, с образцами графического изображения и текстовой обратной связью. Это позволяет пользователю надёжно контролировать процесс выбора параметров.

Проекты могут быть дополнительно оптимизированы для моделирования отклика цепей с помощью функции Quick Optimize. Моделирование цепей учитывает потери и паразитные эффекты разрывов. Отображение топологии фильтра может быть выбрано в виде схемы с геометрическими размерами, плоской компоновки или трёхмерной проекции. На рисунке 2 показан трёхмерный макет простого фильтра на встречно-гребенчатой структуре с результатами моделирования в виде S-параметров схемы.

Прямой экспорт из FilterSolutions в Empire XPU

Для экспорта из FilterSolutions используется раскрывающийся список Export в левом верхнем углу панели (см. рис. 3). Выбор пункта Setup вызовет панель экспорта Empire XPU, а выбор Direct — прямой экспорт в Empire с использованием ранее сохранённых настроек экспорта. На странице экспорта Empire XPU представлены все параметры экспорта, доступные для данной программы, включая путь, геометрию подложки, выбор типа фильтра DMS (Defected Microstrip Structure) и DGS (Defected Ground Structure) и выбор скорости/точности моделирования.

Симуляция и оптимизация в Empire для проектов фильтров FilterSolutions

Экспорт планарного проекта Filter-Solutions включает в себя все параме-

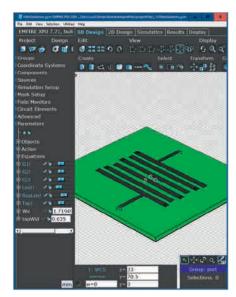


Рис. 4. Экспорт проекта встречно-гребенчатого фильтра из FilterSolutions в Empire XPU

тры и уравнения, необходимые для 3D-оптимизации электромагнитного поля в Етріге XPU. С помощью обычных «ползунков» можно настраивать любые экспортируемые параметры. Все уравнения, необходимые для поддержания целостности планарного проекта, а также настраиваемые параметры включаются в экспортируемый проект. На рисунке 4 показан графический интерфейс Етріге XPU при экспортировании проекта встречно-гребенчатого фильтра.

Трёхмерное моделирование можно запустить непосредственно в экспортированном проекте, выбрав Start Simulations в раскрывающемся меню File. На рисунке 5 показаны результаты трёхмерного электромагнитного моделирования (S-параметры) в Етріге ХРU. Понятно, что для этой конструкции фильтра желательна некоторая оптимизация электромагнитных характеристик.

Трёхмерная электромагнитная оптимизация может быть выполнена с помощью функции Simulation Optimization Control. Так как цели оптимизации уже были заданы в проекте, их необходимо просто включить на вкладке целей оптимизации моделирования. Учебное пособие на странице экспорта FilterSolutions содержит подробные инструкции по графическому интерфейсу Empire XPU для конфигурирования и запуска процесса оптимизации. После завершения работы оптимизированные параметры можно скопировать обратно в FilterSolutions. На рисунке 6 показана полностью оптимизированная диаграмма S-параметров в окне Empire XPU.

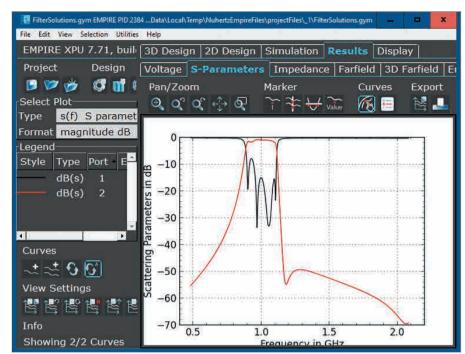


Рис. 5. S-параметры фильтра после 3D-моделирования в Empire XPU

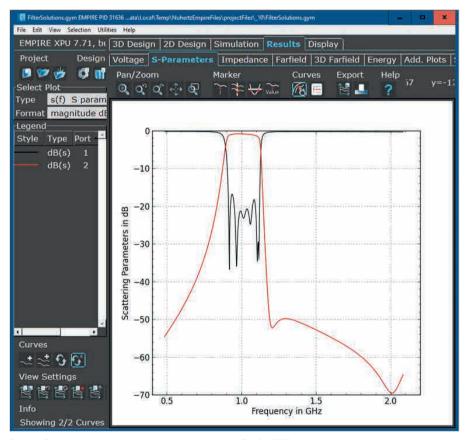


Рис. 6. S-параметры оптимизированного проекта в Empire XPU

Заключение

Синтез конструкции антенны и разработка фильтра представляют собой совершенно разные задачи, требующие разных навыков проектирования и применения специализированных инструментов. Тем не менее, как показано в данной статье, эти инструменты могут использоваться совместно. Точная настройка трёхмерной геометрии позволяет оптимизировать электромагнитные характеристики плоских фильтров или антенн. Это, в свою очередь, открывает возможности для использования мощных возможностей программы Empire XPU в качестве инструмента электромагнитной оптимизации как конструкций плоских фильтров, так и 3D-антенн.



B cocтaв Delta Design, обеспечивающей сквозной цикл проектирования печатных плат, входят модули:

- Менеджер библиотек
- Схемотехнический редактор
- Схемотехническое моделирование
- HDL-симулятор

- Редактор правил
- Редактор печатных плат
- Топологический редактор плат ТороR
- Коллективная работа для предприятий

TDK·Lambda

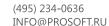
Серия HWS, HWS-A

- AC/DC-источники питания мощностью от 15 до 1560 Вт
- Ограниченная пожизненная гарантия
- Диапазон рабочих температур –40...+70°С, конформное покрытие платы (модификация HD)
- Широкий диапазон выходных напряжений: от 3,3 до 60 В
- Работа в режиме пиковой мощности 300% в течение 5 с (модификация Р)

Серия PFE, PFH

- AC/DC-преобразователи на плату от 300 до 1008 Вт
- Вход: 85–265 В АС, регулируемый выход: 12, 24, 48, 51 В DC
- Защиты от перенапряжений, перегрузки, перегрева
- Диапазон рабочих температур подложки −40...+100°C
- Цифровое управление, обратная связь, поддержка PMBus™

Серия СN-А


- DC/DC-преобразователи на плату от 30 до 200 Вт
- Повышенная устойчивость к вибрациям, рекомендован для железнодорожного транспорта
- Диапазон рабочих температур –40...+100°С на подложке без снижения мощности
- Вход: 60–160 В DC или 14,4–36 В DC, выход: 5–24 В DC
- 5 лет гарантии

Серия HQA/GQA

- DC/DC-преобразователи на плату мощностью 85 и 120 Вт
- Ударные перегрузки до 50g
- Диапазон рабочих температур -55 (-40)...+115°C
- Широкий диапазон входных напряжений: 9–40 В и 18–40 В DC
- Выходные напряжения: 5, 12, 15, 24, 28, 48 B DC
- КПД до 91,5%

