Тысяча и одна «мелочь» редактора принципиальных электрических схем в САПР Delta Design Часть 2

Сергей Пилкин, Георгий Шаманов (Москва)

В первой части статьи (см. №1, 2017) мы рассматривали функциональность редактора в целом, которая обеспечивает создание многолистовых иерархических схем с произвольной глубиной детализации блоков и формирование по созданной схеме конструкторской документации.

В данной части статьи мы сосредоточимся на «мелочах», которые облегчают работу специалиста, и, в конечном счёте, сокращают сроки разработки устройства.

Размещение компонентов и прокладывание проводников занимает бо́льшую часть времени при создании схемы.

Рассмотрим ещё несколько «мелочей» в работе редактора схем. И начнём с автоподключения выводов.

Размещение компонентов и редактирование линий электрических соединений

На рисунке 7 изображён момент размещения нового компонента рядом с DD5. При этом новый компонент размещается вплотную и таким образом, чтобы выводы совпадали.

В момент размещения компонента будут автоматически созданы цепи, соединяющие наложенные друг на друга выводы. На рисунке 8 компонент DD6 (который конструктор и размещал в примере) сдвинут вправо для демонстрации созданных линий электрической связи.

Рассмотренная ситуация достаточно типична при работе с компонентами.

Рис. 7. Размещение компонента для автоподключения выводов

Рис. 8. Созданные автоматически линии электрических соединений

Другой типичной ситуацией при создании схемы является необходимость размещения компонента в разрыв. Рассмотрим пример схемы на рисунке 9а и допустим, что конструктору необходимо разместить компонент так, как показано на рисунке 9б.

Delta Design в момент размещения компонента поверх цепи автоматически выполнит все необходимые действия и разместит компонент так, как показано на рисунке 9в.

Важно отметить, что вставка компонента в разрыв приводит к разбиению существующей цепи на две. Предыдущее имя цепи будет оставлено за участком цепи с бо́льшим «весом». «Вес» участка цепи определяется интеллектуальным алгоритмом и зависит от наличия на нём портов (порты питания имеют бо́льший вес), входов в шину, а также длины участка цепи. Второй участок цепи, образовавшийся после разрыва, получит новое уникальное имя.

При этом все изменения, произведённые в проекте, редактор запомнит как одно действие, и это действие может быть отменено одним нажатием Ctrl + Z. Редактор помнит все действия схемотехника в текущем сеансе работы и позволяет вернуться на любое количество шагов назад. При этом объём памяти, который необходим для работы Delta Design, мало зависит от количества изменений, производимых в сеансе. Эта особенность системы позволяет разработчику иметь «бесконечную» очередь UNDO/REDO.

Также стоит отметить, что компонент может иметь «скрытые» выводы. «Скрытые» выводы – это такие выводы компонента (как правило, выводы земли и питания), которые отсутствуют в УГО. Подключение таких выводов осуществляется автоматически при размещении компонента на схеме. При желании можно отключить или переподключить «скрытые» выводы с помощью специального диалога.

Рис. 9. Размещения компонента в разрыв: а – исходная схема; б – подключение компонента; в – схема после подключения

Замена компонентов и радиодеталей на схеме

Достаточно часто на схеме необходимо заменить компонент. Это бывает нужно, если:

- компонент был изменён в библиотеке;
- нужно выбрать другую радиодеталь, с другими параметрами (например, с другим номиналом);
- заменить радиодеталь на аналог (например, другого производителя).

Система Delta Design предлагает ряд удобных механизмов для замены компонентов на схеме. Можно выделить компонент на схеме и в контекстном меню выбрать пункт «Обновить компонент». При этом запустится интеллектуальный алгоритм обновления. Если габариты УГО компонента не изменились, и не изменилось расположение выводов, то УГО будет заменено на новое. В противном случае будет запущен интерактивный инструмент размещения компонента взамен существующего и пользователю нужно будет выбрать новое расположение компонента. И в первом, и во втором случае сохраняются все подключённые проводники.

В версии Delta Design 2.1 появился новый механизм массового обновления компонентов на схеме и плате (см. рис. 10). Система сама находит все изменённые компоненты в проекте, выдаёт подробную диагностику – что поменялось, а также позволяет одной кнопкой обновить весь проект.

Работа с шинами

Для заведения цепи в шину в системе Delta Design необходимо на схеме подключить проводник этой цепи к шине. При этом автоматически образуется специальный графический «вход» в шину (см. рис. 11). Данный «вход» в шину по умолчанию сразу показывает метку с именем цепи,

DeltaDesign — система сквозного проектирования электронных устройств на базе печатных плат

- Менеджер библиотек LIBerty
- Схемотехнический редактор FlexyS
- Схемотехническое моделирование SimOne
- HDL-симулятор Simtera
- Ведение правил DRM
- Редактор печатных плат RightPCB
- Топологический трассировщик ТороR
- Коллективная работа "Workgroups"
- Для предприятий "Enterprise server"

<u>WWW.DD.RU</u>

ОФИЦИАЛЬНЫЙ ПОСТАВЩИК ПРОДУКЦИИ EREMEX

ProSoft[®]

Тел.: (495) 234-0636 • info@prosoft.ru • www.prosoft.ru

J003наче	ние	Компонент	Радиодеталь	Дата в проекте	Дата в библиотеке	
IO501		Универсальный вход (Универсальный вход (23.01.2017 17:34:00	12.05.2016 16:49:00	
IO502		Слот расширения	Слот расширения	23.01.2017 17:34:00	01.12.2016 13:03:59	
IO503		Слот расширения	Слот расширения	23.01.2017 17:34:00	01.12.2016 13:03:59	
IO504		Слот расширения	Слот расширения	23.01.2017 17:34:00	01.12.2016 13:03:59	
D L200		CDRH12x	CDRH127NP-470MC	23.01.2017 17:34:01	27.09.2016 18:33:35	
R 100	\checkmark	R 0603 5%	R_0603 560 OM ±5 %	23.01.2017 17:34:01	01.02.2017 14:31:10	
R 101	\checkmark	R 0603 5%	R_0603 1 KOM ±5 %	23.01.2017 17:34:01	01.02.2017 14:31:10	
R 102	\checkmark	R 0603 5%	R_0603 1 KOM ±5 %	23.01.2017 17:34:01	01.02.2017 14:31:10	
R 103	\checkmark	R 0603 5%	R_0603 1 KOM ±5 %	23.01.2017 17:34:01	01.02.2017 14:31:10	
R 104	\checkmark	R 0603 5%	R_0603 1 KOM ±5 %	23.01.2017 17:34:01	01.02.2017 14:31:10	
R 105	\checkmark	R 0603 5%	R_0603 5,1 KOM ±5 %	23.01.2017 17:34:01	01.02.2017 14:31:10	
R 106		R 0805 5%	R_0805 10 Om ±5 %	23.01.2017 17:34:01	27.09.2016 18:22:25	
R 107		R 0805 5%	R_0805 10 Om ±5 %	23.01.2017 17:34:01	27.09.2016 18:22:25	
R 108		R 0805 5%	R_0805 120 OM ±5 %	23.01.2017 17:34:01	27.09.2016 18:22:25	
R 109	\checkmark	R 0603 5%	R_0603 5,1 KOM ±5 %	23.01.2017 17:34:01	01.02.2017 14:31:10	
R110		R 0805 5%	R_0805 240 OM ±5 %	23.01.2017 17:34:01	27.09.2016 18:22:25	

Рис. 10. Механизм массового обновления компонентов на схеме и плате в версии Delta Design 2.1

Рис. 11. Графический «вход» в шину

	DD5			
PF0/OSC_IN		PA0	6	■ PA0
PF1/OSC_OUT	MCU	PA1	7	■PA1
	Cortex-MO	PA2	8	■PA2
4 RST		PA3	9	■PA3
		PA4	10	■PA4
воото		PA5	11	PA5
		PA6	12	■PA6
16 VDD		PA7	13	■PA7
		PA9	17	■PA9
		PA10	18	
5 VODA		PA13/SWDID	19	
_		PA14/SWELK	20	(0
				B
15 VSS		PB1	14	A
S	TM32F030F4F	6	,	

Рис. 13. Подключение к шине группы проводников с помощью перетаскивания

Oranimani	Список	Диапазон		
О смешанный	Добавление цепей		0	
Описок	Удалить цепи	Задать диапазон		
Эдиапазон	Очистить			
Цепи шины	Подключенные ц	епи	Вверх	
Y_PWR	<- V_PWR	5		
🕆 +5V	<- +5V	5	Вниз	
TI2C_SDA	<- I2C_SDA	5		
P I2C_SCL	<- I2C_SCL	5		
UART_RX	<- UART_RX	4		
T UART_TX	<- UART_TX	4		
P SPI_CSADDR	<- SPI_CSADDR	4		
• V_IO_3.3V	<- V_IO_3.3V	4		
		Биты 11		

Рис. 12. Список заданных наборов цепей в составе шины

PA0 -> PA0 PA1 -> PA1 PA2 -> PA2 PA3 -> PA3 PA4 -> PA4 PA5 -> PA5 PA4	PA0 PA1	->	240
PA1 -> PA1 PA2 -> PA2 PA3 -> PA3 PA4 -> PA4 PA5 -> PA5 PA4	PA1		AU
PA2 -> PA2 PA3 -> PA3 PA4 -> PA4 PA5 -> PA5		->	PA1
PA3 -> PA3 PA4 -> PA4 PA5 -> PA5	PA2	->	PA2
PA4 -> PA4 PA5 -> PA5	PA3	->	PA3
PA5 -> PA5	PA4	->	PA4
DAG DAG	PA5	->	PA5
PA0 -> PA0	PA6	->	PA6
PA7 -> PA7	PA7	->	PA7
PA9 -> PA9	PA9	->	PA9
PA10 -> PA10	PA10	->	PA 10

Рис. 14. Соответствие проводников цепям в шине

ИМПОРТОЗАМЕЩЕНИЕ

которую можно отключить (сделать невидимой).

В системе Delta Design набор цепей в составе шины можно задавать несколькими различными способами: диапазон, список, смешанный.

Диапазон. Например, ADDR[0:7] создаст в шине цепи ADDR0, ADDR1, ...ADDR7.

Список. Любой заданный набор цепей (см. рис. 12).

Смешанный. Цепи в шине определяются по фактическому графическому подключению проводников к шине.

Система Delta Design при проверке схемы контролирует, что все цепи, входящие в шину, подключены корректно.

После подключения информация о принадлежности цепи к шине отображается в свойствах цепи, свойствах шины или в менеджере проекта.

Существует механизм массового подключения к шине. Для этого можно выбрать группу проводников (неподключённых концов) и с помощью простого перетаскивания подключить их к шине (см. рис. 13). В появившемся диалоговом окне (см. рис. 14) можно указать соответствие проводников цепям в шине.

Система Delta Design допускает подключение шины непосредственно к выводу компонента. В этом случае вывод компонента должен быть групповым, т.е. содержать внутри несколько контактов компонента (см. рис. 15). Внутреннее подключение цепей шины к контактам компонента в этом случае задаётся с помощью специального диалога (см. рис. 16). Иерархические блоки также могут содержать групповые (шинные) выводы, которые предназначены для заведения шин внутрь иерархических блоков.

Заключение

Редактор принципиальных электрических схем системы Delta Design не

Рис. 15. Групповой вывод компонента: а – список; б – схема

Цепь и	пины	 Подключенный вывод 		Доступные выводы
	+5V	(+5V)		
	I2C_SCL	(I2C_SCL)		
	I2C_SDA	(I2C_SDA)		
-	SPI_CSADDR	(SPI_CSADDR)		
-	SPI_MISO	(SPI_MISO)		
	SPI_MOSI	(SPI_MOSI)	>>	
-	SPI_SCK	(SPI_SCK)		
-	UART_RX	(UART_RX)		
	UART_TX	(UART_TX)		
-	V_IO_3.3V	(+3.3V)		
	V_PWR	(PWR)		
Очис	тить Автопод	ключение		

Рис. 16. Внутреннее подключение цепей шины к контактам компонента

только позволяет разрабатывать схемы любого уровня сложности, но и содержит множество важных деталей, ускоряющих работу.

Редактор поддерживает многолистовые иерархические схемы с произвольной глубиной детализации блоков. Реализована поддержка шин, портов и других объектов, что необходимо для создания сложных схем.

Разработанная схема одновременно является частью конструкторской документации, созданной в соответствии со стандартами. На основании данных схемы система Delta Design обеспечивает выпуск ведомости покупных изделий и других необходимых частей документации.

САПР обеспечивает полноценную поддержку ГОСТ, начиная от входящих в комплект поставки штампов и заканчивая автоматической трассировкой проводников.

