Методология проектирования печатных плат с контролем волнового сопротивления в САПР Delta Design

Вячеслав Кухарук, Виктор Ухин, Александр Гладкевич, Дмитрий Тимасов

В статье рассматривается маршрут разработки печатных плат с учётом импеданса линий передач в САПР Delta Design.

Спроектировать современное устройство без учёта импеданса линий передач (ЛП) практически невозможно – это истина, известная каждому инженеру в области разработки электронной аппаратуры. Для обеспечения высоких темпов развития электроники специалисты должны обладать многофункци-

Рис. 1. Маршрут проектирования устройств с учётом волнового сопротивления линий передачи в САПР Delta Design

ональными и практически совершенными системами автоматизированного проектирования, в том числе и для контроля первичных и вторичных электрофизических параметров линий передач.

Компания «ЭРЕМЕКС» совсем недавно представила инструмент SimPCB, который предназначен для проектирования высокоскоростных цифровых и высокочастотных аналоговых устройств. Это лаборатория, которая уже сейчас позволяет проводить специалисту целый ряд исследований свойств линий передачи и переходных отверстий [2, 3, 4]. Однако SimPCB не исключает рутинных действий, отвлекающих инженера от процесса проектирования. Поэтому компания «ЭРЕ-МЕКС» упростила и автоматизировала важные этапы разработки устройств с контролем импеданса путём внедрения расчётов в основной маршрут проектирования печатных плат. Вычисление геометрических параметров линий передачи и, как одиночных, так и дифференциальных, в САПР Delta Design теперь выполняется в инструменте «Конфигуратор набора слоёв и переходных отверстий». Все расчёты осуществляются с помощью решателя, реализованного в SimPCB.

Рассмотрим маршрут проектирования с учётом изменений на примере, представленном далее.

Маршрут проектирования устройств с учётом волнового сопротивления линий передачи

Маршрут проектирования состоит из трёх основных этапов и представлен на рис. 1.

- Расчёт геометрических параметров ЛП под заданный импеданс, подбор материалов и структуры печатной платы:
 - создание профиля импеданса;
 - выбор типа ЛП;
 - задание целевого импеданса;
 - установка допуска на волновое сопротивление;

руктура Документирующи	е слои Переходные отверстия Калькулятор импеданс	а						
1 🕂 🗯 💐 🐴 🤌	Производитель: <Все> ~							
Конструктивный элемент	Материал	N⁰	Тип слоя	Класс слоя	Имя	Цвет	Толщина (мм)	Стеки
								Default
								Жесткий
								Не используется
Маска	Жидкая маска Зеленая Матовая XV-501T LDI				SOLDERMASK_TOP		0,015	
Фольга	Медь 18мкм	1	Сигнальный	SIGNAL_INTERNAL	L1		0,018	
Препрег	FR4(Tg150) тип 7628						0,18	
		2	Сигнальный	SIGNAL_INTERNAL	L2		0,018	
Основа	FR4(Tg150) IPC-4101/99 Ядро:1.164мм Фольга:18/18мкм						1,164	
			Сигнальный	SIGNAL_INTERNAL	L3	-	0,018	
Препрег	FR4(Tg150) тип 7628						0,18	
Фольга	Медь 18мкм	4	Сигнальный	SIGNAL_INTERNAL	L4		0,018	
Маска	Жидкая маска Зеленая Матовая XV-501T LDI				SOLDERMASK_BOTTOM		0,015	
		4					1,626	1,626 мм

Рис. 2. Конфигуратор набора слоёв и переходных отверстий

руктура Документ	гирующие слои Переходные от	верстия	Калькул	ятор им	педанса	а		
		_						
	Профиль импеданса			3	~	Û		
Тип материала	Материал	Nº	Тип слоя	Имя	Цвет	Толщина (мм)	Er	0

Рис. 3. Добавление профиля импеданса

- задание ширины проводника (W1), подтрава (W2), зазора для дифференциальных пар (S1) в случае необходимости;
- подбор материалов, их добавление/удаление/перемещение, если это необходимо.
- 2. Применение рассчитанных параметров одиночных проводников и дифференциальных пар в правилах проектирования:
- получение def-строчек, содержащих информацию о профиле: ширина проводника, зазор для дифференциальной пары, структура печатной платы, слои;
- назначение правил для цепей и классов цепей.
- Трассировка ЛП, дифференциальных пар или их групп в редакторе печатной платы. При трассировке

рассчитанная ширина и зазор применяются автоматически.

Расчёт геометрических параметров ЛП под заданный импеданс, подбор материалов и структуры печатной платы

В данной статье будет рассмотрен пример проектирования печатной платы с контролем волнового сопротивления одиночной ЛП. Предположим, необходимо спроектировать ЛП для следующей печатной платы.

• Плата состоит из 4 слоёв. Количество слоёв зависит от конкретных конструктивных ограничений. Кроме этого, при формировании структуры печатной платы для высокочастотных цепей необходимо обеспечить прямой и возвратный путь протекания сигнала, а также

тек Default	 Профиль импеданса 		S50_Data		~ 🕀	Описание	Data		Тип Одиночная	~	Импеданс(Ом) 50	С Допуск	10 % 🗘	Расчет W1	
Тип материала	Материал	Nº	Тип слоя	Имя	Цвет	Толщина (мм)	Er	0	Опорный сверху		Опорный снизу	W1 🔀	W2 🔀	Zo 🗊	Tpd (
Иаска	Жидкая маска Зеленая Мато			S		0,015	3,5								
Фольга	Медь 18мкм	1	Сигнальный	L1		0,018		\checkmark	Не задано	\sim	L2 ~	0,3304	0,3304	50,04	5972,01
Ірепрег	FR4(Tg150) тип 7628					0,18	4,1								
		2	Сигнальный	L2		0,018		\checkmark	LI	~	L3 ~	0,2144	0,2144	50,02	6879,49
Основа	FR4(Tg150) IPC-4101/99 Ядр					1,164	4,6								
		3	Сигнальный	L3		0,018		\checkmark	L2	~	L4 ~	0,2144	0,2144	50,02	6879,50
Ірепрег	FR4(Tg150) тип 7628					0,18	4,1								
Фольга	Медь 18мкм	4	Сигнальный	L4		0,018		\checkmark	L3	~	Не задано 🗸	0,3304	0,3304	50,04	5972,01
Ласка	Жидкая маска Зеленая Мато			S		0,015	3,5								
Маска	Жидкая маска Зеленая Мато			S		0,015	3,5					0,0001	0,0004	00,04	

Рис. 4. Профиль одиночной ЛП с импедансом 50 Ом

стек Default	·	Про	филь импеданс	a ! S50_Data		~ 🕀 📋	Описан	ие Da	ta Тип Одиноч	ная – Импеданс(Ом)	50 🗘 Дол	уск 10 % 🔇	Расчет V	/1
Тип материала	Материал	Nº	Тип слоя	Имя	Цвет	Толщина (мм)	Er	0	Опорный сверху	Опорный снизу		W1 🔀	W2 🛈	Zo 🚯	Tpd 🖯
Маска	Жидкая маска Зеленая Мато			SOLDERMAS		0,015	3,5								
Фольга	Медь 18мкм	1	Сигнальный	LI		0,018			Не задано 🗸 🗸	L2	~	0,2	0,18	! 65,44	5884,31
Препрег	FR4(Tg150) тип 7628					0,18	4,1					20.974%	- 07//2010/140	MEGRANICA	
		2	Сигнальный	L2		0,018			L1 ~	L3	~	0,2144	0,2144	50,02	6879,49
Основа	FR4(Tg150) IPC-4101/99 Ядр					1,164	4,6								
		3	Сигнальный	L3		0,018			L2 ~	L4	~	0,2144	0,2144	50,02	6879,50
Препрег	FR4(Tg150) тип 7628					0,18	4,1								
Фольга	Медь 18мкм	4	Сигнальный	L4		0,018			L3 ~	Не задано	~	0,2	0,18	! 65,44	5884,31
Маска	Жидкая маска Зеленая Мато	-		SOLDERMAS		0,015	3,5								

Рис. 5. Сообщение об ошибке, отклонение импеданса больше 30%

Рис. 6. Изменение толщины материала

_	руктура Документирующ	ие слои Переходные отверстия Калькулятор им	педанс	а
*	Конструктивный элеме	нт Материал	Nº	
		FR4(Tg150) тип 1080 (0,076мм) (Er=4,1) FR4(Tg150) тип 2116 (0,125мм) (Er=4,1)		
_	Маска Фольга	FR4(Tg150) тип 7628 (0,18мм) (Er=4,1)	1	Сигна.
Ð	Препрег	Arion-49N тип 1080 75мкм (0,075мм) (Er=4,4)	ı) 🕅	
	Основа	AL5052 0,5 0/0 (0,500mm) AL5052 1 0/0 (1,000mm) AL5052 1,5 0/0 (1,500mm)	2	Сигна. Сигна
	Препрег	AL5052 2 0/0 (2,000mm)		
	Фольга	СТЭФ-1 1,5 0/0 (1,500мм)	4	Сигна.
	Маска	СU 2.0 0/0 (2,000мм)		
		AD255 0.204 (0.204mm)	4	

Рис. 7. Выбор материала во вкладке «Структура», колонке «Материал» 🮯 Материалы * 🛛 🛛 ⊕ - ↑ ↓ ⊖ 🗗 Препрег Фольга Гибк. Толщина (мм) Диэлектричес... Проводимость Те Фольга+Основа ал Основа+Фольга a Фольга+Основа+Фольга ва Основа (диэлектрик) per Основа (металл) га Маска Вмкм \checkmark 0,018 59 500 000 Медь Медь 35мкм \checkmark 0,035 59 500 000 Медь Медь 70мкм \checkmark 0,07 59 500 000 Медь Фольга 12 \checkmark 12 Медь Фольга 18 \checkmark 18 Медь Фольга 35 \checkmark 35 Медь Фольга 70 \checkmark 70 \checkmark Медь Фольга 105 105 \checkmark 140 Медь Фольга 140 Фольга 0,018мм + осажденная медь 0,023мм Медь \checkmark 0,045 59 500 000

Рис. 8. Добавление нового материала в «Стандарты – Материалы»

Ko	нфи	гуратор набора слоев и переходных	х отверстий						
		_							
	Ст	руктура Документирующие слои	и Переходные отверстия Калькулятор импеданса						
	-	🕇 🕹 ڭ 🐐 🤌 Про	оизводитель: <bce> ~</bce>						
		Конструктивный элемент	Материал	N⁰	Тип слоя	Класс слоя	Имя	Цвет	Толщина (мм)
		Маска	Жидкая маска Зеленая Матовая XV-501T LDI				SOLDERMASK_TOP		0,015
	0	Фольга	Фольга 0,018мм + осажденная медь 0,023мм 🗸	1	Сигнальный	SIGNAL_INTERNAL	L1		0,045
	Ð	Препрег	Медь 18мкм (0,018мм)						0,125
			Медь 35мкм (0,035мм)	2	Сигнальный	SIGNAL_INTERNAL	L2		0,018
		Основа	Медь 70мкм (0,07мм)						1,164
			Фольга 12 (12мм)	3	Сигнальный	SIGNAL_INTERNAL	L3		0,018
		Препрег	Фольга 18 (18мм)						0,125
		Фольга	Фольга 35 (35мм)	4	Сигнальный	SIGNAL_INTERNAL	L4		0,045
		Маска	Фольга 70 (70мм)				SOLDERMASK_BOTTOM		0,015
			Фольга 105 (105мм)	4					1,570
E			Фольга 140 (140мм)	-					
			Фольга 0,018мм + осажденная медь 0,023мм (0,045мм)						

Рис. 9. Замена материала на внешних проводящих слоях

руктура Документирующие сло	и Переходные отверстия калькулятор импеданса						
T + 💐 💐 🌱 🗤	оизводитель: <все>						
Конструктивный элемент	Материал	Nº	Тип слоя	Класс слоя	Имя	Цвет	Толщина (м
Маска	Жидкая маска Зеленая Матовая XV-501T LDI				SOLDERMASK_TOP		
Фольга	льга Фольга 0,018мм + осажденная медь 0,023мм Imper FR4(Tg150) тип 2116		Сигнальный	SIGNAL_INTERNAL	L1		
Препрег							
		2	Опорный	SIGNAL_INTERNAL	L2		
Основа	FR4(Tg150) IPC-4101/99 Ядро:1.164мм Фольга:18/18мкм						
		3	Опорный 🗸	SIGNAL_INTERNAL	L3		
Препрег	FR4(Tg150) тип 2116		Сигнальный				
Фольга	Фольга 0,018мм + осажденная медь 0,023мм	4	Опорный	SIGNAL_INTERNAL	L4		
Маска	Жидкая маска Зеленая Матовая XV-501T LDI				SOLDERMASK_BOTTOM		
		4					

Рис. 10. Изменение типа слоя во вкладке «Структура»

Стек Default	~	Проф	риль импеданса	S50_Data		 ✓ ① ■ 	Описания	e Da	ta Тип Одинс	очна	ия ч Импеданс(Ом)	1	50 🗘 Допу	ск 10 % 🗘	Расчет W	
Тип материала	Материал	N ^o	Тип слоя	Имя	Цвет	Толщина (мм)	Er	0	Опорный сверху		Опорный снизу		W1 🔁	W2 🛈	Zo	Tpd 🖯
Маска	Жидкая маска Зеленая Мато			SOLDERMAS		0,015	3,5									
Фольга	Фольга 0,018мм + осажденн	1	Сигнальный	L1		0,045		\checkmark	Не задано	~	L2 ×	~	0,2	0,18	51,49	5892,28
Npenper	FR4(Tg150) тип 2116					0,125	4,1									
		2	Опорный	L2		0,018			u	~	L3 、					
Основа	FR4(Tg150) IPC-4101/99 Ядр					1,164	4,6									
		3	Опорный	L3		0,018			L2	~	L4 ×	-				
Npenper	FR4(Tg150) тип 2116					0,125	4,1									
Фольга	Фольга 0,018мм + осажденн	4	Сигнальный	L4		0,045		\checkmark	L3	~	Не задано	~	0,2	0,18	51,49	5892,28
Маска	Жидкая маска Зеленая Мато			SOLDERMAS		0,015	3,5									

Рис. 11. Расчёт импеданса и задержки сигнала на внешних слоях для W1 = 0,2 мм

организовать планарный конденсатор между потенциальными (опорными) слоями.

- Импеданс 50 Ом. Конкретное значение импеданса зависит от выбранного интерфейса. Информация присутствует в документации.
- Ширина проводника W1 = 0,2 мм, с учётом подтрава W2 = 0,18 мм на внешних слоях. Выбор ширины проводника (W1) зависит от многих факторов, например, от материалов, доступных на производстве и соответствующих технологическо-

му процессу, класса точности ПП, минимального шага компонентов, потерь, перекрёстных помех и т.д. Подтрав (W2) зависит от технологических процессов на заводе. На внешних и внутренних слоях он, как правило, разный. Хороша практика уточнения инженером информации у технологических служб на заводе.

 Отклонение расчёта импеданса не более 10%. При расчёте волнового сопротивления для высокоскоростных и высокочастотных сигналов допуск в 10% вполне до-

LITEMAX

ВАШ ИНФОРМАЦИОННЫЙ ПОПУТЧИК!

Полосковые дисплеи для транспорта

- ЖК-дисплеи серии SPANPIXEL™ с яркостью до 3000 кд/м²
- Размеры по диагонали от 6,2 до 65
- Разрешение до 4К2К
- Угол обзора 178° (во всех плоскостях)
- Диапазон рабочих температур (некоторых моделей) –30...+85°С
- Возможна разработка под заказ
- Ресурс до 100 000 часов

статочен. В более требовательных случаях может использоваться отклонение в 5%.

- Внутренние слои. Второй и третий слой используются как опорные.
- Необходимо запустить инструмент «Конфигуратор набора слоёв и переходных отверстий». Во вкладке «Структура» будет отображаться текущий стек с материалами (рис. 2).
- Для контроля волнового сопротивления необходимо выбрать вкладку «Калькулятор импеданса» и добавить новый профиль импеданса, нажав на плюс в верхнем меню (рис. 3).
- После добавления профиля импеданса программа автоматически посчитает ширину одиночного проводника (W1) под заданный импеданс (по умолчанию 50 Ом) на тех слоях, где это возможно (рис. 4).

В верхней части вкладки «Калькулятор импеданса» представлены следующие настройки.

- Стек выбор структуры для расчёта. Например, если используется гибко-жёсткая плата с несколькими структурами. Оставим по умолчанию Default.
- Профиль импеданса полное название профиля. Здесь же осуществляется добавление/удаление или выбор другого профиля при его наличии. Оставим по умолчанию один профиль. После изменения типа линии и добавления текста в поле Описание название профиля должно измениться на S50_Data.
- Описание дополнительная информация о профиле. Изменим имя на Data.
- Тип одиночная или дифф. пара. Оставим по умолчанию Одиночная.
- Импеданс значение целевого волнового сопротивления. Для данной задачи импеданс составляет 50 Ом. Пользователь всегда может его поменять, если требуется подстройка расчётов под другое значение.
- Допуск рассчитывается между целевым и расчётным импедансом Zo или Zdiff, в зависимости от типа выбранной ЛП. Оставим по умолчанию 10%.
- Расчёт для одиночной ЛП рассчитывается ширина проводника W1. Для дифф. пары вычисление может выполняться как для W1, так и для S1. Кроме автоматического расчёта W1 и S1 инженер всегда может ввести свои геометрические параметры

АКТИВНЫЙ КОМПОНЕНТ ВАШЕГО БИЗНЕСА

(495) 232-2522 = INFO@PROCHIP.RU = WWW.PROCHIP.RU

официальный дистрибьютор

Рис. 12. Строчка def, содержащая информацию о профиле импеданса

Рис. 13. Применение профиля к цепи и классу цепей

Рис. 14. Автоматическое применение размеров ширины проводника при переходе со слоя на слой для одиночного проводника

линии передачи и получить соответствующие им значения **Zo** или **Zdiff**.

Система автоматически вычисляет **W1** или **S1** под заданное волновое сопротивление таким образом, чтобы отклонение от номинального значения было минимальным (рис. 4). В данном случае ширина проводника на слоях L1 и L4 для 50 Ом составляет 0,33 мм.

Изменим ширину проводника во вкладке «Калькулятор импеданса» для слоёв L1 и L2 на данные, указанные в условии выше: W1 = 0,2 мм, W2 = 0,18 мм. Расчётный импеданс примет значение 65,44 Ом. Отклонение более 30%, что недопустимо. В ячейке Zo и профиле импеданса будут сообщения об ошибке (рис. 5).

Для того чтобы импеданс попал в нужный допуск (%), а ширина проводника W1 соответствовала определённой величине, необходимо подобрать материалы с определёнными параметрами (толщина и диэлектрическая проницаемость) и стек ПП.

В распоряжении инженера два поля: Толщина (мм) и диэлектрическая проницаемость Er, а также возможность проводить любые манипуляции с перемещением, добавлением и удалением слоёв как проводящих, так и диэлектрических. Используя данные о реальных материалах, изменим толщину диэлектрика между слоями L1–L2 и L3–L4 на 0,125 мм. Данный параметр соответствует **препрегу FR4 (Tg150) тип 2116**. При этом **Zo** на внешних слоях составит 53,79 Ом, что близко к заданному (рис. 6).

Система отслеживает параметры применяемых материалов и не позволяет использовать абстрактные. На рис. 6 показано сообщение об ошибке. Это реакция программы на несоответствие. Специалисту следует использовать материалы в структуре печатной платы только из «Стандартов», которые должны соответствовать реальным, имеющимся в наличии у завода-изготовителя.

В данном случае подходящий материал присутствует: **препрег FR4** (Tg150) тип 2116 с толщиной 0,125 мм. Установим его между слоями L1–L2 и L3–L4 (рис. 7).

Если материала нет в наличии, то его необходимо добавить в раздел «Материалы» панели «Стандарты». Параметры материала должны полностью соответствовать реальному, применяемому на заводе-изготовителе.

Для примера добавим в раздел новый материал: Фольга 0,018 мм + + осаждённая медь 0,023 мм (рис. 8). Таким образом можно учесть увеличение толщины меди на внешних слоях после металлизации отверстий.

Во вкладке «**Структура**» для слоя L1 и L2 применим новый материал (рис. 9).

Здесь же, в колонке **Тип слоя**, назначим L2 и L3 как опорные (рис. 10). После этого в калькуляторе импеданса внутренние слои станут недоступны для расчёта волнового сопротивления.

В «Калькуляторе импеданса» снова назначим на внешних слоях W1 = 0,2 мм и W2 = 0,18 мм. При этом Zo составит 51,47 Ом.

В табл. 1 показано значение волнового сопротивления для разных материалов.

Последний вариант является наиболее предпочтительным. Для сохранения расчётов и передачи данных в правила необходимо нажать кнопку «**OK**».

Применение рассчитанных параметров одиночных проводников и дифф. пар в правилах проектирования

Данные из «Калькулятора импеданса» в «Конфигураторе слоёв и переход-

Рис. 15. Автоматическое применение размеров ширины проводника при переходе со слоя на слой для проводника, входящего в класс

Таблица 1. Импеданс ЛП

Описание	Материалы (мм)	Zo (Ом)
Изначальное состояние стека	Толщина препрега 0,18 Толщина фольги 0,018	65,44
Коррекция толщины диэлектрика, изменение препрега	Толщина препрега 0,125 Толщина фольги 0,018	53,79
Коррекция толщины проводящего слоя	Толщина препрега 0,125 Толщина фольги 0,045	51,47

ных отверстий» передаются в правила проектирования. В правилах они представляются в виде командных строк, которые начинаются с **def**.

Ниже представлен пример строчки из редактора правил (рис. 12).

Командная строка выглядит следующим образом:

def S150_Data { L1 {Layer="L1";

Width=0,2; Stack="Default"};

L4 {Layer="L4"; Width=0,2;

Stack="Default"}}

Здесь:

S50_Data – название профиля;

Layer L1 и L4 – слои, для которых при-

меняется правило;

Default – стек печатной платы;

Width=0,2 – ширина проводника в мм. На рис. 13 показано назначение профиля к конкретной цепи и классу цепей. Командные строки выглядят так:

Width: (Net="A0") use S50_Data;

Width: (NetClass="B") use S50_Data.

Если расчёт выполняется для дифф. пар, например с параметрами, представленными ниже:

D100_NewProfile:

- слой L1 с шириной проводника = 0,16 мм и зазором внутри дифф. пары = 0,1 мм, стек – Default;
- слой L2 с шириной проводника = 0,12 мм и зазором внутри дифф. пары = 0,12 мм, стек – Default, то:

def D100_NewProfile { L1 {Layer="L1"; Width=0,16; Stack="Default";

Gap=0,1}; L2 {Layer="L2"; Width=0,12;

Stack="Default"; Gap=0,12}}. Назначение профиля для конкретDiffPair: (Net="A") use D100_NewProfile. Для класса дифф. пар:

DiffPair: (NetClass="D") use D100_ NewProfile.

После внесения изменений в правила их следует сохранить.

Трассировка линий передач, дифф. пар или их групп в редакторе печатной платы

Трассировка проводников с контролируемым волновым сопротивлением аналогична прокладке обычных трасс. Система автоматически применяет ширину, рассчитанную для заданного импеданса. Например, если выбрать цепь А0 из представленного примера и начать выполнять трассировку на слое L1, то применится ширина проводника, равная 0,2 мм. Данный параметр соответствует волновому сопротивлению в 50 Ом. При переходе на слой L4 ширина сохранится (рис. 14).

Подобным же образом работает трассировка и для класса цепей (рис. 15).

Заключение

«Калькулятор импеданса» в «Конфигураторе набора слоёв и переходных отвер-

стий» САПР Delta Design реализован на основе инструмента SimPCB и интегрирован в маршрут проектирования печатных плат, что позволяет осуществлять контроль волнового сопротивления как одиночных, так и дифференциальных линий передачи, проектировать структуру, учитывать материалы и особенности производства. Любые изменения структуры печатной платы приводят к быстрому пересчёту параметров линий. В случае выхода импеданса за указанный допуск система оповещает специалиста, исключая появление ошибок. Данные из конфигуратора набора слоёв автоматически передаются в правила проектирования, позволяя инженеру сосредоточиться на процессе разработки устройства, а не на рутинных действиях.

Основные преимущества нового подхода:

- расчёт геометрических параметров линий передачи (одиночных и дифференциальных) под заданный импеданс непосредственно в инструменте «Конфигуратор набора слоёв и переходных отверстий»;
- управление материалами. Специалист разрабатывает не абстрактную структуру, а реальную. Контроль импедан-

са осуществляется в связке с библиотекой материалов и их параметров;

- оповещение инженера в случае выхода волнового сопротивления за указанный допуск;
- автоматическое применение рассчитанных параметров линий передачи в правилах;
- трассировка с учётом импеданса.

Список литературы

- Кечиев Л.Н. Печатные платы и узлы гигабитной электроники. М.: Грифон, 2017. 424 с.
- 2. Обзор основных возможностей инструмента SimPCB для расчёта параметров линий передач в про-грамме Delta Design // Современная электроника. 2024. № 5. С. 34–36.
- Ухин В.А., Коломенский Д.С., Кухарук В.С. и др. Методы расчёта волнового сопротивления линий передач на печатных платах // Современная электроника. 2023. № 9. С. 40–42.
- Кухарук В.С., Коломенский Д.С., Ухин В.А. и др. Сравнение результатов расчётов волнового сопротивления линий передач на печатных платах // Современная электроника. 2023. № 9. С. 43–45.

