Методология проектирования печатных плат с контролем волнового сопротивления в САПР Delta Design

Вячеслав Кухарук, Виктор Ухин, Александр Гладкевич, Дмитрий Тимасов

В статье рассматривается маршрут разработки печатных плат с учётом импеданса линий передач в САПР Delta Design.

Спроектировать современное устройство без учёта импеданса линий передач (ЛП) практически невозможно – это истина, известная каждому инжене-

ру в области разработки электронной аппаратуры. Для обеспечения высоких темпов развития электроники специалисты должны обладать многофункци-

Создание профиля. выбор типа ЛП и целевого импеданса Назначение сигнальных и опорных слоев для ЛП Расчет W1,S1 под заданный Zo или Zdiff Значение Нет расчетного импеданса соответствует условию? Да Получение профилей в Подбор материала правилах (def) Добавление/Удаление Задание правил цепей и /Перемещение слоев. классов цепей Трассировка проводников с заданными параметрами Конфигуратор набора слоев и переходных отверстий. Калькулятор импеданса Нет Трассировка закончена? Редактор правил Да Редактор платы Завершить

Puc. 1. Маршрут проектирования устройств с учётом волнового conpomuвления линий передачи в CAПР Delta Design

ональными и практически совершенными системами автоматизированного проектирования, в том числе и для контроля первичных и вторичных электрофизических параметров линий передач.

Компания «ЭРЕМЕКС» совсем недавно представила инструмент SimPCB, который предназначен для проектирования высокоскоростных цифровых и высокочастотных аналоговых устройств. Это лаборатория, которая уже сейчас позволяет проводить специалисту целый ряд исследований свойств линий передачи и переходных отверстий [2, 3, 4]. Однако SimPCB не исключает рутинных действий, отвлекающих инженера от процесса проектирования. Поэтому компания «ЭРЕ-МЕКС» упростила и автоматизировала важные этапы разработки устройств с контролем импеданса путём внедрения расчётов в основной маршрут проектирования печатных плат. Вычисление геометрических параметров линий передачи и, как одиночных, так и дифференциальных, в САПР Delta Design теперь выполняется в инструменте «Конфигуратор набора слоёв и переходных отверстий». Все расчёты осуществляются с помощью решателя, реализованного в SimPCB.

Рассмотрим маршрут проектирования с учётом изменений на примере, представленном далее.

Маршрут проектирования устройств с учётом волнового сопротивления линий передачи

Маршрут проектирования состоит из трёх основных этапов и представлен на рис. 1.

- 1. Расчёт геометрических параметров ЛП под заданный импеданс, подбор материалов и структуры печатной платы:
 - создание профиля импеданса;
 - выбор типа ЛП;
 - задание целевого импеданса;
 - установка допуска на волновое сопротивление;

12

Рис. 2. Конфигуратор набора слоёв и переходных отверстий

Рис. 3. Добавление профиля импеданса

- задание ширины проводника (W1), подтрава (W2), зазора для дифференциальных пар (S1) в случае необходимости;
- подбор материалов, их добавление/удаление/перемещение, если это необходимо.
- 2. Применение рассчитанных параметров одиночных проводников и дифференциальных пар в правилах проектирования:
- получение def-строчек, содержащих информацию о профиле: ширина проводника, зазор для дифференциальной пары, структура печатной платы, слои;
- назначение правил для цепей и классов цепей.
- 3. Трассировка ЛП, дифференциальных пар или их групп в редакторе печатной платы. При трассировке

рассчитанная ширина и зазор применяются автоматически.

Расчёт геометрических параметров ЛП под заданный импеданс, подбор материалов и структуры печатной платы

В данной статье будет рассмотрен пример проектирования печатной платы с контролем волнового сопротивления одиночной ЛП. Предположим, необходимо спроектировать ЛП для следующей печатной платы.

• Плата состоит из 4 слоёв. Количество слоёв зависит от конкретных конструктивных ограничений. Кроме этого, при формировании структуры печатной платы для высокочастотных цепей необходимо обеспечить прямой и возвратный путь протекания сигнала, а также

Рис. 4. Профиль одиночной ЛП с импедансом 50 Ом

Рис. 5. Сообщение об ошибке, отклонение импеданса больше 30%

Рис. 6. Изменение толщины материала

Рис. 7. Выбор материала во вкладке «Структура», колонке «Материал»

Рис. 8. Добавление нового материала в «Стандарты – Материалы»

Рис. 9. Замена материала на внешних проводящих слоях

Рис. 10. Изменение типа слоя во вкладке «Структура»

Рис. 11. Расчёт импеданса и задержки сигнала на внешних слоях для W1 = 0,2 мм

организовать планарный конденсатор между потенциальными (опорными) слоями.

- Импеданс 50 Ом. Конкретное значение импеданса зависит от выбранного интерфейса. Информация присутствует в документации.
- Ширина проводника W1 = 0,2 мм, с учётом подтрава W2 = 0,18 мм на внешних слоях. Выбор ширины проводника (W1) зависит от многих факторов, например, от материалов, доступных на производстве и соответствующих технологическо-
- му процессу, класса точности ПП, минимального шага компонентов, потерь, перекрёстных помех и т.д. Подтрав (W2) зависит от технологических процессов на заводе. На внешних и внутренних слоях он, как правило, разный. Хороша практика уточнения инженером информации у технологических служб на заводе.
- Отклонение расчёта импеданса не более 10%. При расчёте волнового сопротивления для высокоскоростных и высокочастотных сигналов допуск в 10% вполне до-
- статочен. В более требовательных случаях может использоваться отклонение в 5%.
- **Внутренние слои.** Второй и третий слой используются как опорные.
- 1. Необходимо запустить инструмент «Конфигуратор набора слоёв и переходных отверстий». Во вкладке «Структура» будет отображаться текущий стек с материалами (рис. 2).
- 2. Для контроля волнового сопротивления необходимо выбрать вкладку «Калькулятор импеданса» и добавить новый профиль импеданса, нажав на плюс в верхнем меню (рис. 3).
- 3. После добавления профиля импеданса программа автоматически посчитает ширину одиночного проводника (W1) под заданный импеданс (по умолчанию 50 Ом) на тех слоях, где это возможно (рис. 4).

В верхней части вкладки «Калькулятор импеданса» представлены следующие настройки.

- Стек выбор структуры для расчёта. Например, если используется гибко-жёсткая плата с несколькими структурами. Оставим по умолчанию Default.
- Профиль импеданса полное название профиля. Здесь же осуществляется добавление/удаление или выбор другого профиля при его наличии. Оставим по умолчанию один профиль. После изменения типа линии и добавления текста в поле Описание название профиля должно измениться на \$50_Data.
- Описание дополнительная информация о профиле. Изменим имя на раза
- Тип одиночная или дифф. пара. Оставим по умолчанию Одиночная.
- Импеданс значение целевого волнового сопротивления. Для данной задачи импеданс составляет 50 Ом. Пользователь всегда может его поменять, если требуется подстройка расчётов под другое значение.
- Допуск рассчитывается между целевым и расчётным импедансом Zo или Zdiff, в зависимости от типа выбранной ЛП. Оставим по умолчанию 10%.
- Расчёт для одиночной ЛП рассчитывается ширина проводника W1. Для дифф. пары вычисление может выполняться как для W1, так и для S1. Кроме автоматического расчёта W1 и S1 инженер всегда может ввести свои геометрические параметры

ВАШ ИНФОРМАЦИОННЫЙ ПОПУТЧИК!

Полосковые дисплеи для транспорта

- ЖК-дисплеи серии SPANPIXEL™ с яркостью до 3000 кд/м²
- Размеры по диагонали от 6,2 до 65
- Разрешение до 4К2К
- Угол обзора 178° (во всех плоскостях)
- Диапазон рабочих температур (некоторых моделей) -30...+85°C
- Возможна разработка под заказ
- Ресурс до 100 000 часов

ОФИЦИАЛЬНЫЙ ДИСТРИБЬЮТОР

АКТИВНЫЙ КОМПОНЕНТ ВАШЕГО БИЗНЕСА (495) 232-2522 • INFO@PROCHIP.RU • WWW.PROCHIP.RU


```
| Beauty | ClearanceSN: (IsSmdPad; IsHole) = 0.1
| ClearanceSN: (IsHole; IsBorder) = 0.15
| Clearance: (IsBole; IsBorder) = 0.15
| Clearance: (IsBole; IsBorder) = 0.15
| Clearance: (IsHole; IsBorder) = 0.15
| Clearance: (IsMetal; IsBorder) = 0.1
```

Рис. 12. Строчка def, содержащая информацию о профиле импеданса

```
1 def 550 Data { L1 {Layer="L1"; Width=0,2; Stack="Default"}; L4 {Layer="L4"; Width=0,2; Stack="Default"}}
2 Width: (Net="A0") use 550 Data
3 Width: (NetClass="B") use 550 Data
4 Allow: (Any) = {Tunction:PinviaTrack}
5 DiffPair: (Any) = {Min:0.1; Nom:0.1; Neck:0.1; NeckGlobal:3.0; NeckLocal:1.0; GapMin:0.1; GapNom:0.1; NeckGap:0.05; GapTolerance+:0.004; GapTolerance-:0.004}
6 DiffPair: (Any) = {UncoupledGlobal:3; UncoupledLocal:3; PhaseTolerance:3; IncludeGathering:true}
7 Width: (IsAnnuaRing) = 0.025
8 Width: (Any) = {Min:0.1; Nom:0.1; Neck:0.1; NeckGlobal:3.0; NeckLocal:1.0}
9 ClearanceSN: (IsTrack; IsHole) = 0.1
10 ClearanceSN: (IsTrack; IsHole) = 0.1
11 ClearanceSN: (IsTrack; IsHole) = 0.1
12 ClearanceSN: (IsVia; IsHole) = 0.1
13 Clearance: (IsHole; IsHole) = 0.15
14 Clearance: (IsHole; IsHole) = 0.15
15 Clearance: (IsMetal; IsBorder) = 0.1
16 ClearanceSN: (IsMetal; IsHole) = 0.1
```

Рис. 13. Применение профиля к цепи и классу цепей

Рис. 14. Автоматическое применение размеров ширины проводника при переходе со слоя на слой для одиночного проводника

линии передачи и получить соответствующие им значения **Zo** или **Zdiff**.

Система автоматически вычисляет **W1** или **S1** под заданное волновое сопротивление таким образом, чтобы отклонение от номинального значения было минимальным (рис. 4). В данном случае ширина проводника на слоях L1 и L4 для 50 Ом составляет 0,33 мм.

Изменим ширину проводника во вкладке «Калькулятор импеданса» для слоёв L1 и L2 на данные, указанные в условии выше: W1 = 0,2 мм, W2 = 0,18 мм. Расчётный импеданс примет значение 65,44 Ом. Отклонение более 30%, что недопустимо. В ячейке Zo и профиле импеданса будут сообщения об ошибке (рис. 5).

Для того чтобы импеданс попал в нужный допуск (%), а ширина проводника **W1** соответствовала определённой величине, необходимо подобрать материалы с определёнными параметрами (толщина и диэлектрическая проницаемость) и стек ПП.

В распоряжении инженера два поля: Толщина (мм) и диэлектрическая проницаемость Er, а также возможность проводить любые манипуляции с перемещением, добавлением и удалением слоёв как проводящих, так и диэлектрических. Используя данные о реальных материалах, изменим толщину диэлектрика между слоями L1–L2 и L3–L4 на 0,125 мм. Дан-

ный параметр соответствует **препрегу FR4 (Tg150) тип 2116**. При этом **Zo** на внешних слоях составит 53,79 Ом, что близко к заданному (рис. 6).

Система отслеживает параметры применяемых материалов и не позволяет использовать абстрактные. На рис. 6 показано сообщение об ошибке. Это реакция программы на несоответствие. Специалисту следует использовать материалы в структуре печатной платы только из «Стандартов», которые должны соответствовать реальным, имеющимся в наличии у завода-изготовителя.

В данном случае подходящий материал присутствует: **препрег FR4 (Тg150) тип 2116** с толщиной 0,125 мм. Установим его между слоями L1–L2 и L3–L4 (рис. 7).

Если материала нет в наличии, то его необходимо добавить в раздел «Материалы» панели «Стандарты». Параметры материала должны полностью соответствовать реальному, применяемому на заводе-изготовителе.

Для примера добавим в раздел новый материал: Фольга 0,018 мм + осаждённая медь 0,023 мм (рис. 8). Таким образом можно учесть увеличение толщины меди на внешних слоях после металлизации отверстий.

Во вкладке **«Структура»** для слоя L1 и L2 применим новый материал (рис. 9).

Здесь же, в колонке **Тип слоя**, назначим L2 и L3 как опорные (рис. 10). После этого в калькуляторе импеданса внутренние слои станут недоступны для расчёта волнового сопротивления.

В «Калькуляторе импеданса» снова назначим на внешних слоях **W1** = 0,2 мм и **W2** = 0,18 мм. При этом **Zo** составит 51,47 Ом.

В табл. 1 показано значение волнового сопротивления для разных материалов.

Последний вариант является наиболее предпочтительным. Для сохранения расчётов и передачи данных в правила необходимо нажать кнопку «ОК».

Применение рассчитанных параметров одиночных проводников и дифф. пар в правилах проектирования

Данные из «Калькулятора импеданса» в «Конфигураторе слоёв и переход-

Рис. 15. Автоматическое применение размеров ширины проводника при переходе со слоя на слой для проводника, входящего в класс

Таблица 1. Импеданс ЛП

Описание	Материалы (мм)	Zo (Ом)
Изначальное состояние стека	Толщина препрега 0,18 Толщина фольги 0,018	65,44
Коррекция толщины диэлектрика, изменение препрега	Толщина препрега 0,125 Толщина фольги 0,018	53,79
Коррекция толщины проводящего слоя	Толщина препрега 0,125 Толщина фольги 0,045	51,47

ных отверстий» передаются в правила проектирования. В правилах они представляются в виде командных строк, которые начинаются с **def**.

Ниже представлен пример строчки из редактора правил (рис. 12).

Командная строка выглядит следующим образом: def S150_Data { L1 {Layer="L1";

Width=0,2; Stack="Default"}; L4 {Layer="L4"; Width=0,2; Stack="Default"}}

Здесь:

S50_Data – название профиля;

Layer L1 и **L4** – слои, для которых применяется правило;

Default – стек печатной платы;

Width=0,2 – ширина проводника в мм.

На рис. 13 показано назначение профиля к конкретной цепи и классу цепей. Командные строки выглядят так:

Width: (Net="A0") use S50_Data; Width: (NetClass="B") use S50_Data.

Если расчёт выполняется для дифф. пар, например с параметрами, представленными ниже:

D100 NewProfile:

- слой L1 с шириной проводника = 0,16 мм и зазором внутри дифф. пары = 0,1 мм, стек – Default;
- слой L2 с шириной проводника = 0,12 мм и зазором внутри дифф. пары = 0,12 мм, стек – Default, то:

def D100_NewProfile { L1 {Layer="L1"; Width=0,16; Stack="Default"; Gap=0,1}; L2 {Layer="L2"; Width=0,12; Stack="Default"; Gap=0,12}}.

Назначение профиля для конкретной дифф. пары:

DiffPair: (Net="A") use D100_NewProfile. Для класса дифф. пар:

DiffPair: (NetClass="D") use D100_

После внесения изменений в правила их следует сохранить.

Трассировка линий передач, дифф. пар или их групп в редакторе печатной платы

Трассировка проводников с контролируемым волновым сопротивлением аналогична прокладке обычных трасс. Система автоматически применяет ширину, рассчитанную для заданного импеданса. Например, если выбрать цепь А0 из представленного примера и начать выполнять трассировку на слое L1, то применится ширина проводника, равная 0,2 мм. Данный параметр соответствует волновому сопротивлению в 50 Ом. При переходе на слой L4 ширина сохранится (рис. 14).

Подобным же образом работает трассировка и для класса цепей (рис. 15).

Заключение

«Калькулятор импеданса» в «Конфигураторе набора слоёв и переходных отвер-

стий» CAПР Delta Design реализован на основе инструмента SimPCB и интегрирован в маршрут проектирования печатных плат, что позволяет осуществлять контроль волнового сопротивления как одиночных, так и дифференциальных линий передачи, проектировать структуру, учитывать материалы и особенности производства. Любые изменения структуры печатной платы приводят к быстрому пересчёту параметров линий. В случае выхода импеданса за указанный допуск система оповещает специалиста, исключая появление ошибок. Данные из конфигуратора набора слоёв автоматически передаются в правила проектирования, позволяя инженеру сосредоточиться на процессе разработки устройства, а не на рутинных действиях.

Основные преимущества нового подхода:

- расчёт геометрических параметров линий передачи (одиночных и дифференциальных) под заданный импеданс непосредственно в инструменте «Конфигуратор набора слоёв и переходных отверстий»;
- управление материалами. Специалист разрабатывает не абстрактную структуру, а реальную. Контроль импедан-

- са осуществляется в связке с библиотекой материалов и их параметров;
- оповещение инженера в случае выхода волнового сопротивления за указанный допуск;
- автоматическое применение рассчитанных параметров линий передачи в правилах;
- трассировка с учётом импеданса.

Список литературы

- 1. *Кечиев Л.Н.* Печатные платы и узлы гигабитной электроники. М.: Грифон, 2017. 424 с.
- 2. Обзор основных возможностей инструмента SimPCB для расчёта параметров линий передач в программе Delta Design // Современная электроника. 2024. № 5. С. 34–36.
- 3. Ухин В.А., Коломенский Д.С., Кухарук В.С. и др. Методы расчёта волнового сопротивления линий передач на печатных платах // Современная электроника. 2023. № 9. С. 40–42.
- Кухарук В.С., Коломенский Д.С., Ухин В.А. и др. Сравнение результатов расчётов волнового сопротивления линий передач на печатных платах // Современная электроника. 2023. № 9. С. 43–45.

Характеристики

- Яркость экрана до 150 кд/м² обеспечивает считывание изображения при ярком солнечном свете
- Высокая контрастность 10 000:1
- Широкий угол обзора до ±175°
- Цвет свечения: жёлтый, зелёный, красный, белый, синий
- Формат изображения: 122×32, 128×64, 240×64, 256×64 и 96×64 точки
- Низкая потребляемая мощность 10 мА (схемы управления – токовые)
- Светоэмиссионная схема: не требуется система подсветки
- Короткое время отклика: 10 мкс при температуре +25°C
- Широкий диапазон рабочих температур от -40 до +80°C
- Малая толщина модуля дисплея, небольшой вес
- Срок службы: 50 000 ч для белого и синего цвета; 100 000 ч для жёлтого, зелёного, красного цветов

ОФИЦИАЛЬНЫЙ ДИСТРИБЬЮТОР

АКТИВНЫЙ КОМПОНЕНТ ВАШЕГО БИЗНЕСА

(495) 232-2522 = INFO@PROCHIP.RU = WWW.PROCHIP.RU

