Миграция данных из P-CAD в Delta Design

Сергей Пилкин (pilkin@prosoft.ru)

Несмотря на то что САПР для проектирования печатных плат P-CAD не развивается уже 12 лет, она всё ещё широко используется на многих предприятиях в нашей стране. Для всех пользователей данной системы рано или поздно встаёт вопрос о переходе на более современные САПР. В данной статье будет рассмотрен процесс перехода с P-CAD на отечественную САПР Delta Design.

За десятилетия работы с P-CAD предприятия накопили большой объём библиотек компонентов и реализованных проектов, которые представляют собой большую ценность, поэтому задача по переносу наработанных данных в новую систему является одной из важнейших. Процесс переноса данных из одной САПР в другую является очень сложным, и ни одна САПР не позволяет перенести данные со 100% точностью. Это касается даже процесса переноса данных между САПР различных версий и продуктов одного производителя - всегда существует вероятность возникновения ошибок и потери части информации.

В данной статье будет предложена методология переноса данных из P-CAD в Delta Design, которая позволяет минимизировать потерю данных. Выполнение приведённых рекомендаций позволяет перенести данные практически со 100% точностью.

Процесс переноса данных состоит из ряда шагов, которые необходимо выполнять в определённом порядке. Он не является полностью автоматическим, т.е. потребуется ряд ручных операций по заданию параметров и корректировке информации. Необходимо чётко следовать приведённой далее инструкции и переходить к следующему шагу только при полном завершении предыдущего этапа – только в этом случае будет достигнуто максимальное качество процедуры миграции. Однако в ситуации, когда не стоит задача достижения наилучшего результата, ряд шагов можно опустить.

Можно выделить 3 основных этапа миграции:

1. Настройка стандартов предприятия (СТО).

Семейства компонентов							
Семейства компонентов 🗧 🗙 🔍 👻							
Добавить семейство Удалить семейство Добавить атрибут Удалить атрибут							
Идентификатор Обозн		начение семейс	Название (ед. число) Названи		е (мн. число)		
Все семейства						<u> </u>	
	A A			Устройство	Устройства		
•	В	В		Преобразователь физических вел	Преобразователи физических вел		
	с с			Конденсатор Конд		нденсаторы	
⊿ D		D		Интегральная схема	Интегральные схемы		
	DA	DA		Микросхема аналоговая	Микросхемы аналоговые		
DD		DD		Микросхема цифровая	Микросхемы цифровые		
	DS DS			Устройство хранения информации	Устройства хранения информации		-
Код атрибута			Название атрибута		Тип атрибута		
Actual			Доступность		Логическое		
Comment			Примечание		Строка		
Footprint			Посадочное место		Строка		
PartName			Радиодеталь		Строка		
PartNumber			Артикул		Строка		
Weight			Macca		Десятичное		

Рис. 1. Семейства компонентов в Delta Design

- 2. Перенос библиотек компонентов.
- 3. Перенос проектов (схемы и платы).

Настройка стандартов предприятия (СТО)

Организация данных в системе Delta Design является более строгой, чем в P-CAD, поэтому на первом этапе необходимо настроить в Delta Design классификацию компонентов, которая используется на предприятии. В Р-САD для каждого компонента есть возможность задания любого префикса позиционного обозначения и любого набора атрибутов, однако для работы предприятия такой подход неприемлем: как правило, предприятие унифицирует префиксы позиционных обозначений и набор атрибутов для компонентов. В Delta Design для этого существует понятие семейства компонентов, которое определяет отдельный класс компонентов, имеющих единые префиксы позиционного обозначения и набор атрибутов. Семейства компонентов образуют иерархию с использованием наследования атрибутов. Атрибуты, присущие всем компонентам, задаются с помощью корневого уровня иерархии «Все семейства», а любые его потомки добавляют свои специфические данные в конкретные семейства (см. рис. 1). Например, для семейства конденсаторов (префикс «С») добавляются атрибуты «Номинал» (Value), «ТКЕ» (ТС) - температурный коэффициент ёмкости, «Точность» (Tolerance) и «Напряжение» (Voltage). Для дальнейшей классификации конденсаторов по подтипам можно создать несколько потомков со своими специфическими атрибутами.

В Delta Design используется строгая типизация атрибутов. В P-CAD атрибуты являются строками, а в Delta Design они имеют определённый тип: строка, целое число, вещественное число и т.д. (см. рис. 2). Кроме стандартных имеются специализированные типы: сопротивление, мощность, напряжение и т.п. При задании нужного типа атрибута необходимо учитывать, что исходные

СПЕЦПРОЕКТ РАЗВИТИЕ

СОВРЕМЕННЫЕ ТЕХНОЛОГИИ

атрибуты компонентов в P-CAD должны иметь возможность преобразования в этот тип. Если преобразование значения атрибута в этот тип невозможно, то в процессе импорта система выдаст соответствующее предупреждение и данное значение атрибута будет пропущено, например если для поля указан числовой тип, а значение атрибута в P-CAD равно «Москва».

САПР Delta Design поддерживает интеллектуальное преобразование из строки для специализированных типов. Например, для типа «Сопротивление» исходная строка может иметь следующие варианты: «1k» (1 кОм), «10М» (10 мОм), «10М» (10 мОм), «4К7» (4,7 кОм) и т.д. Понимаются и русские, и английские буквы, а также «.» или «,» в качестве разделителя.

Следует отметить, что несколько семейств могут иметь одинаковые префиксы позиционных обозначений.

В отличие от P-CAD, каждый компонент в Delta Design всегда относится к какомулибо семейству. При построении перечня элементов происходит группировка именно по их семейству. Название этого семейства во множественном числе пишется в заголовке группы. Некоторые предприятия добавляют для компонента в P-CAD атрибут названия его семейства. В Delta Design это становится ненужным.

В P-CAD при создании посадочных мест имеется возможность лобавления дополнительного слоя. В Delta Design для этой цели используется механизм классов слоёв. Поэтому, если в библиотеке используются дополнительные слои, то необходимо создать в Delta Design эти классы слоёв. Слои могут быть проводящими (сигнальными или опорными) или документационными. В отличие от P-CAD, где в каждом посадочном месте можно создать свой набор слоёв, в Delta Design классы слоёв являются унифицированными и относятся к стандартам предприятия. Это позволяет в дальнейшем избавиться от проблем несовместимости различных библиотек при проектировании печатной платы.

Перенос библиотек компонентов

Для импорта библиотеки компонентов необходимо вызвать пункт меню

Рис. 2. Выбор типа атрибута

Рис. 3. Установка соответствия атрибутов

«Файл» → «Импорт» → «Библиотека P-CAD (LIA, LIB)». Delta Design определяет как ASCII-формат библиотек P-CAD (LIA), так и бинарный формат (LIB), однако для чтения последнего на данном компьютере должен быть установлен P-CAD. Также следует отметить, что импорт ASCIIформата осуществляется быстрее.

Для импорта P-CAD библиотек используется мастер импорта (см. рис. 3), работа которого состоит из нескольких шагов. Для детального управления шагами импорта необходимо снять галочку «Пропустить необязательные шаги». В рамках первого шага работы мастера импорта необходимо выбрать исходный файл библиотеки P-CAD (LIA или LIB) – система автоматически задаст имя библиотеки в Delta Design, которое можно поменять. После нажатия на кнопку «Далее» Delta Design запишет библиотеку P-CAD в память. Необходимо внимательно следить за появляющимися сообщениями. На этом этапе могут возникнуть проблемы с несоответствием формата файла библиотеки, особенно если этот файл получен путём экспорта из другой системы. Для решения подобных проблем следует открыть данный файл в P-CAD и сохранить его заново.

В процессе следующего шага «Соответствие атрибутов» необходимо задать соответствие семейств компонентов Delta Design и атрибутов компонентов. По умолчанию система ищет соответствие семействам компонентов по их префиксу позиционного обозначения, поэтому, если настройка семейства компонентов в стандартах выполнена надлежащим образом, правильное соот-

СОВРЕМЕННЫЕ ТЕХНОЛОГИИ

СПЕЦПРОЕКТ РАЗВИТИЕ

Рис. 4. Преобразование УГО

ветствие будет найдено автоматически. Для быстрого поиска семейства можно набрать на клавиатуре префикс его позиционного обозначения. Необхолимо обязательно задать соответствие всем атрибутам. Если для какого-либо атрибута не задано соответствие, то он не будет импортирован. В этом случае в условнографическом обозначении (УГО) или на посадочном месте, в котором использовался данный атрибут, будет стоять пробел. О том, что всем атрибутам задано соответствие, сигнализирует зелёная стрелочка. Если стрелочка имеет красный цвет, то для части атрибутов соответствие не установлено – они будут пропущены и, соответственно, не импортируются. Каждому атрибуту следует задать однозначное соответствие, т.е. нельзя несколько атрибутов Р-САД совместить в одном атрибуте Delta Design - система выдаст соответствующее предупреждение.

В P-CAD все компоненты имеют атрибут «Туре», который автоматически импортируется в Delta Design как атрибут «Радиодеталь» (PartName). Также система автоматически определяет атрибут «RefDes», который не требует указания соответствия.

Следующий шаг – задание соответствия классов слоёв, если в исходной библиотеке использовались дополнительные нестандартные слои.

После задания всех параметров импорта нужно нажать кнопку «Импортировать» – начнётся процесс переноса данных. На данном этапе следует внимательно следить за выдаваемыми сообщениями, особенно с предупреждениями и ошибками. Можно установить фильтр и отключить информационные сообщения, чтобы сконцентрироваться на проблемах. Полученный журнал импорта можно сохранить в текстовый файл нажатием кнопки «Сохранить». Часть предупреждений на этом этапе можно проигнорировать – например, в P-CAD необязательно задавать значение номинала элементов в библиотеке, т.к. оно впоследствии задаётся на схеме. В Delta Design значение номинала радиодеталей рекомендуется задавать на этапе создания библиотеки.

После завершения процесса переноса данных запускается процедура проверки компонентов. Если какие-то компоненты не прошли проверку, то в журнале импорта появится соответствующее сообщение, а в дереве библиотек после сохранения этот компонент будет помечен восклицательным знаком.

Для сохранения результатов импорта в базе данных Delta Design нужно нажать кнопку «Готово». Если в процессе импортирования возникли какие-либо проблемы, которые необходимо исправить в исходной библиотеке P-CAD, то можно просто закрыть мастер импорта без сохранения. Следует отметить, что процесс переноса данных в общем случае является итерационным, т.е. некоторые обнаруженные проблемы гораздо проще решить в исходных данных (непосредственно в P-CAD), а затем снова повторить процесс импорта. После сохранения импортированная библиотека появится в дереве библиотек.

После этого необходимо выполнить ряд шагов, направленных на то, чтобы дальнейшее использование этой библиотеки не вызывало проблем в Delta Design. В первую очередь стоит обратить внимание на «невалидные» компоненты, которые отображаются с восклицательным знаком. Это те компоненты, при проверке которых были обнаружены проблемы. Для уточнения возникших проблем следует открыть данный компонент, запустить его проверку и исправить имеющиеся ошибки. «Невалидный» компонент нельзя использовать в проекте.

Особенности импорта УГО

Модель данных УГО компонента в P-CAD и Delta Design имеет много общего, но есть ряд отличий, которые необходимо учитывать для того, чтобы добиться точного преобразования. В P-CAD для указания точки привязки УГО используется Ref Point, и дан-

СОВРЕМЕННЫЕ ТЕХНОЛОГИИ

СПЕЦПРОЕКТ РАЗВИТИЕ

ная точка не влияет на систему координат. В Delta Design точка привязки всегда располагается в начале координат и её перенос влияет на координаты всех объектов в УГО, поэтому абсолютные значения координат объектов УГО в Delta Design будут отличаться от их координат в P-CAD как раз на величины координат Ref Point.

В Delta Design все выводы компонентов должны располагаться в определённой сетке, заданной в миллиметрах или милах. Ограничений на расположение других объектов нет. Следует отметить, что координатами вывода в Delta Design является точка подключения проводника, в отличие от P-CAD, где задаются координаты противоположной точки. В связи с этим в P-CAD на координаты точки подключения вывода влияет длина его «ножки». Необходимо следить за тем, чтобы длина «ножки» была кратна сетке, установленной в Delta Design.

P-CAD не позволяет задать толщину линии «ножки» вывода, поэтому общепринятой практикой стало обведение «ножки» линией. В Delta Design «ножка» вывода имеет толщину, заданную в таблице стилей («Схема» → «Линии» → «Ножка вывода»). Там же можно дополнительно задать цвет, тип линии и форму окончания. Таким образом, обведение «ножки» линией в Delta Design является избыточным и ненужным, т.е. такие линии нужно удалить. Это можно сделать в редакторе УГО (для точного выбора следует использовать «Фильтр выбора» и выбрать тип «Полилиния») или запустить специальную процедуру как для отдельного УГО, так и для библиотеки в целом. Для запуска данной процедуры в контекстном меню библиотеки или компонента в дереве библиотек необходимо выбрать пункт «Преобразовать УГО» (см. рис. 4). В открывшемся диалоге нужно установить галочку «Удалить штрихи, дублирующие выводы УГО» и нажать «Применить». Редактор УГО при выполнении этой процедуры должен быть закрыт.

В P-CAD имеется возможность задавать внешний вид отображения вывода параметрами Inside Edge, Outside Edge, Inside, Outside. В Delta Design переносит-

Рис. 6. УГО до и после импорта

ся только значение параметра Outside Edge, что является достаточным для отображения УГО по ГОСТ. Также в Delta Design не требуется обводка значков толстой линией, поэтому эти дополнительные линии и кружочки следует удалить в редакторе Delta Design, а для обозначения свойства вывода нужно назначить ему нужный символ (см. рис. 5).

Параметры вывода P-CAD Default Ріп Name и Default Ріп Des переносятся в Delta Design как «Метка вывода» и «Имя контакта» соответственно. Сохраняется расположение и стиль текста этих атрибутов, но в редакторе УГО Delta Design на месте атрибута PinDes отображается вопросительный знак «?», означающий, что в этом месте должен находиться номер контактной площадки, который зависит от выбранного посадочного места. В связи с этим конкретная информация о компоненте будет отображаться только при размещении его на схеме и может отличаться от значения в Р-САD, если для компонента выбрано посадочное место с другой нумерацией контактных площадок.

Следующим шагом является приведение в порядок сетки выводов УГО компонентов. В Delta Design сетка выводов для УГО является обязательной. Каждое УГО имеет заданную сетку выводов в миллиметрах или милах. Не следует её путать с графической сеткой, которая определяет только текущий режим работы редактора и шаг которой может быть любым. На данном этапе необходимо задать сетку выводов компонента и нужные единицы измерения. Во избежание проблем в дальнейшем для всех компонентов в библиотеке желательно выставить единые сетку и единицы измерений и использовать эти значения при создании схемы (см. рис. 6).

Система Delta Design, в отличие от P-CAD, поддерживает отдельные повёрнутые и отражённые виды УГО компонентов. При импорте из P-CAD все эти виды будут построены автоматически, но рекомендуется проверить расположение атрибутов на дополнительных видах и в случае необходимости задать им желательные позиции.

Заключение

Первые два этапа переноса данных, а именно настройка стандартов предприятия и перенос библиотек, являются самыми важными для обеспечения качественной миграции. Перед тем как переходить к импорту проектов, рекомендуется перепроверить полученный при импорте библиотек результат и исправить все обнаруженные проблемы. Импортированные библиотеки можно использовать для создания новых проектов в Delta Design.

Рекомендации по переносу проектов (схем и плат) из P-CAD в систему Delta Design будут описаны в последующих номерах журнала.