Интерфейсный мост UART-Ethernet для Интернета вещей

Олег Вальпа (sandh@narod.ru)

В статье описывается недорогой преобразователь интерфейсов, позволяющий подключить любое микроконтроллерное устройство к сети Интернет, а также приводятся схема подключения и методика настройки данного преобразователя.

Введение

В настоящее время стремительно развивается концепция Интернета вещей (IoT), что приводит к росту потребности в устройствах с сетевым доступом. Несмотря на общую сложность многоуровневой сетевой модели OSI (Open Systems Interconnection) и сетевых интерфейсов типа Ethernet, Wi-Fi и GPRS, существуют варианты простой организации сетевого доступа для различных устройств. Одно из таких решений описано далее.

Практически все микроконтроллеры имеют в своём составе универсальный асинхронный последовательный порт UART, который обеспечивает связь между ними и внешними устройствами. Если к данному порту подключить интерфейсный мост UART-Ethernet, то аппаратная часть задачи будет решена. Далее потребуется реализовать программную часть, т.е. адаптировать программу микроконтроллера к одному из стандартных сетевых протоколов.

Поскольку ресурсы большинства недорогих микроконтроллеров невелики и не позволяют хранить в своей памяти множество интернет-страниц, можно обойтись одним из самых распространённых протоколов – Modbus RTU. Программная реализация данного протокола возможна практически для всех микроконтроллеров, а существующий стандартный сетевой про-

Рис. 1. Внешний вид модуля Eport-E10

токол Modbus TCP обеспечит двустороннюю связь микроконтроллерного устройства с внешним миром по сети.

Аппаратная реализация

В качестве аппаратного моста между интерфейсами UART и Ethernet предлагается использовать недорогой модуль Eport-E10 от компании Hi-Flying [1]. Он представляет собой электронное устройство в виде миниатюрного блока с встроенным сетевым разъёмом для интерфейса Ethernet. Внешний вид устройства показан на рисунке 1.

Модуль построен на современном АРМ-микроконтроллере с операционной системой Free RTOS. Технические характеристики модуля приведены в таблице 1. Типовая схема подключения Eport-E10 к микроконтроллеру приведена на рисунке 2. Расположение контактов модуля со стороны пайки показано на рисунке 3. Назначение контактов модуля и обозначения всех сигналов приведены в таблице 2. Для подключения сетевого кабеля Ethernet в Eport-E10 имеется стандартный соединитель типа RJ-45 (см. табл. 3).

ПРОГРАММНАЯ РЕАЛИЗАЦИЯ

Поскольку модуль Eport-E10 имеет встроенную поддержку множества сетевых протоколов, для активации протокола Modbus TCP потребуется лишь сконфигурировать модуль с помощью любого браузера. Для выполнения данной процедуры необходимо подать питание на модуль и подключить его к компьютеру через стандартный сетевой кабель. В браузере необходимо ввести адрес 169.254.173.207 и дождаться появления окна авторизации модуля Eport-E10.

Если окно авторизации не появляется, следует убедиться в том, что модуль откликается на запросы. Сделать это можно из командной строки с помощью команды *ping 169.254.173.207*. Некоторые модули могут иметь IP-адрес 169.254.1.1. Для поиска IP-адреса модуля можно использовать специальную программу IOTService, которая доступна на сайте компании Hi-Flying [2] во вкладке *Downloads*. Данная программа также позволит произвести настройки различных параметров модуля или восстановить заводские настройки.

Таблица 1	Технические	уапактепистики	молупа	Enort_F10
таолица г.	ICXNNNGLANC	λαμακισμησιήκη	модуля	EDUIL-EIU

Параметр	Значение				
Базовые параметры					
Напряжение питания, В	3,3				
Рабочий ток, мА, не более	250				
Потребляемая мощность, мВт, не более	700				
Размер (Д×Ш×В), мм	33×18,6×15				
Диапазон рабочих температур	_45 +85°C				
Диапазоны температур и влажности хранения	-45 +105°C, 595%				
Системные	параметры				
Процессор / Частота	Cortex-M3 / 90 МГц				
Память Flash / SDRAM	1 МБ / 128 КБ				
Операционная система	Free RTOS				
Порт Е	thernet				
Тип соединителя	RJ-45 с двумя светодиодными индикаторами				
Интерфейсный стандарт	10 / 100Base-T				
Защита изоляции, кВ	2				
Сетевой трансформатор	Интегрированный				
Сетевые протоколы	IP, TCP, UDP, DHCP, DNS, HTTP Server/Client, ARP, BOOTP, AutolP, ICMP, Web socket, Telnet, FTP, TFTP, uPNP, NTP, Modbus TCP				
Протокол шифрования	SSL v3 AES 128Bit DES3				
Последовательный порт					
Интерфейсный стандарт	3,3 B TTL				
Количество информационных бит	5, 6, 7 или 8				
Количество стоповых бит	1 или 2				
Контрольный бит	Отсутствует, чётный, нечётный, пустой или маркерный				
Скорость обмена, бод	600921600				
Управление потоком	Аппаратно RTS/CTS, DSR/DTR; программно Xon/Xoff; отключено				

Вывод	Обозначение	Назначение	Тип вывода	Примечание	
1	GPI01	Порт ввода-вывода	Вход/Выход	Можно назначить, как TXD2	
2	GPIO2 Порт ввода-вывода CTS UARTO		Вход/Выход	Можно назначить, как RXD2 Можно назначить, как GPIO3	
3			Вход		
4	nRST	Внешний сброс	Вход	Сброс низким уровнем	
5	RTS	UARTO Выход		Может управлять RS-485	
6	nReload	Многофункциональный	Вход	Перезагрузка процессора	
7	LED2_Data	Индикация данных	Выход	Подключается к выводу 12	
8	RXD	Приём данных	Вход	3,3 B TTL	
9	TXD	Передача данных	Выход	3,3 B TTL	
10) GND Общий		Общий	Общий вывод питания	
11	1 VDD Питание модуля 3,3 В		Питание	+3,3 B	
12	LED1_Link	Индикация подключения	Выход	Подключается к выводу 16	
13	LED2	Индикатор 2 оранжевый	Вход	Подключается к выводу 7	
14	LED_3V3	Питание индикатора 3,3 В	Питание	Подключается к источнику 3,3 В	
15	15 LED_3V3 Питание индикатора 3,3 В		Питание	Подключается к источнику 3,3 В	
16	16 LED1 Индикатор 1 зелёный		Вход	Подключается к выводу 12	

Рис. 3. Нумерация контактов модуля Eport-E10 со стороны пайки

12

11

10

9

8

7

6

5

4

3

2

1

16

15

14

13

Таблица 3. Назначение контактов соединителя RJ-45

Вывод	Обозначение	Назначение	Тип вывода		
1	Tx+	Передача данных +	Выход		
2	Tx–	Передача данных –	Выход		
3	Rx+	Приём данных +	Вход		
4		Не подключён			
5		Не подключён			
6	Rx–	Приём данных –	Вход		
7		Не подключён			
8		Не подключён			
9	Shield	Корпусная земля	Общий		

По умолчанию имя пользователя и пароль имеют одинаковое значение admin, которое необходимо ввести в соответствующие поля окна авторизации, после чего откроется главная страница настроек модуля Eport-E10 с именем STATUS (см. рис. 4). На ней отображаются МАС-адрес модуля, IP-адрес, версия программного обеспечения и другие параметры. Для изменения IP-адреса модуля необходимо переключиться на вкладку SYSTEM SETTINGS. Скорость порта UART, формат его данных и протокол обмена настраиваются на вкладке SERIAL PORT SETTINGS, сетевой протокол можно настроить на вкладке COMMUNICATION SETTINGS, где необходимо выбрать Protocol Tcp Server и Route UART. Для активации новых настроек следует нажать программную кнопку Submit.

В случае отсутствия нужной вкладки необходимо обновить программное обеспечение модуля. Для этого потребуется загрузить с сайта [3] бинарные файлы программного обеспечения, затем открыть в браузере страницу с адресом 169.254.173.207/bide и указать в открывшемся окне путь к загруженному бинарному файлу. Процесс обновле-

Рис. 4. Внешний вид страницы настроек модуля Eport-E10

ния занимает менее минуты. Более подробную информацию о модуле можно найти на сайте производителя.

Заключительной операцией для настройки модуля служит его перезагрузка посредством отключения и последующего включения питания. Теперь микроконтроллерное устройство будет доступно в сети по протоколу Modbus TCP и к нему можно обращаться для чтения или записи данных, в качестве которых могут выступать температура, влажность, давление, скорость, произвольные настройки, коды команд и другие параметры. Зелёный и жёлтый индикаторы модуля Eport-E10 позволяют контролировать соединение с сетью и трансляцию данных соответственно.

Кроме предложенного варианта, существуют подобные решения с применением других модулей компании

Рис. 5. Внешний вид модуля Elfin-EE11

Hi-Flying [4]. Например, модуль Elfin-E11 позволяет осуществить преобразование интерфейса RS-485 в Ethernet. Внешний вид этого модуля показан на рисунке 5. Устройство выполнено в миниатюрном корпусе с встроенным разъёмом RJ-45, через который подключаются сеть, линии связи A и B порта RS-485, а также питание с помощью переходного адаптера, входящего в комплект поставки. Процедура настройки данного модуля аналогична описанной ранее.

Рис. 6. Внешний вид модуля Elfin-EW11

Другой модуль, Elfin-W11, показанный на рисунке 6, обеспечивает преобразование интерфейса RS-485 в Wi-Fi. Модуль Elfin-EG10 позволяет подключить микропроцессорное устройство с интерфейсом RS-232 к сети GPRS. Он имеет слот для SIM-карты и малогабаритную антенну. Внешний вид модуля Elfin-EG10 показан на рисунке 7.

Компания Hi-Flying также производит множество других преобразователей интерфейсов. В зависимости от поставленной задачи можно подобрать Elfin-EG10 SS333 EPPE Mett 5-IRROCATION

Рис. 7. Внешний вид модуля Elfin-EG10

подходящее решение и быстро создать новое устройство с сетевым доступом.

Литература

- 1. www.hi-flying.com
- 2. www.hi-flying.com/index. php?route=product/product/ show&product_id=247
- 3. w w w . h i flying.com/index. php?route=product/product/ show&product_id=182

LUMINE

- 4. www.hi-flying.com/nb-iotmodule
- 5. www.hi-flying.com/network-device (3)

АО «Компонента» — официальный дистрибутор Lumineq предлагает со склада и под заказ электролюминесцентные дисплеи Lumineq для авиационной промышленности.

Отличительные особенности EL дисплеев:

- Высокая надежность.
- Высокая ударопрочность стекло выдерживает удар 100 g и даже 200 g.
- Работа в широком диапазоне температур от –60°С до +85°С.
- Время отклика менее 1 мс во всем рабочем температурном диапазоне.
- Широкий угол обзора (более 170°) в горизонтальной и вертикальной плоскостях.
- Независимо от угла обзора изображение на экране всегда остаётся четким.
- Доступные размеры от 3,5" до 10,4".
- Отличное качество изображения.
- Виброустойчивость.
- Долгий срок работы.

Lumineq производит прозрачные дисплеи, которые могут быть ламинированы в стекло кабины пилотов самолета, вертолета.

8 495 150 2 150

www.komponenta.ru

🔽 info@komponenta.ru

INTEL electren

Испытательная лаборатория АО «НАУЧНО-ИСПЫТАТЕЛЬНЫЙ ЦЕНТР «ИНТЕЛЭЛЕКТРОН»

Испытания и исследования электронных компонентов (ЭКБ) и радиоэлектронной аппаратуры (РЭА)

Виды работ:

- входной контроль
- диагностический неразрушающий контроль
- климатические испытания
- механические испытания
- испытания на надежность, сохраняемость
- проверка на отсутствие признаков контрафакта

синусоидальная вибрация; случайная широкополосная вибрация; механические удары однократного и многократного действия; линейные ускорения; повышенные и пониженные рабочие и предельные температуры; иней и роса; повышенная влажность воздуха; атмосферное пониженное и повышенное давление; солнечное излучение; статическая и динамическая пыль (песок); соляной (морской) туман; акустический шум; определение критических частот; проверка отсутствия критических частот в заданном диапазоне.

Аккредитованная испытательная лаборатория АО «НИЦ «ИНТЕЛЭЛЕКТРОН» соответствует требованиям ГОСТ ИСО/МЭК 17025-2009 к технической компетентности и независимости.

Область аккредитации включает в себя широкую номенклатуру ЭКБ отечественного и иностранного производства, а также аппаратуру, приборы, устройства и оборудование военного назначения.

Реклама

НАУЧНО-ИСПЫТАТЕЛЬНЫЙ ЦЕНТР «ИНТЕЛЭЛЕКТРОН» Тел./ факс: 8(495) 545-4256 111123, г. Москва, ул. Плеханова, д. 4a WWW.INTELELECTRON.RU • info@intelelectron.ru

