

СИСТЕМНАЯ ИНТЕГРАЦИЯ МЕТЕОРОЛОГИЯ

Применение промышленных контроллеров для автоматизации гидрометеорологических измерений

Валерий Корнеев, Геннадий Очеретный, Станислав Очеретный, Виктор Попов

В статье описана автоматическая система измерения метеопараметров, их первичной обработки и представления в нормативном виде для оперативного авиационного метеорологического обеспечения аэропорта Надым. Показана возможность применения промышленных контроллеров для автоматизации измерений параметров окружающей среды.

Введение

Территория нашей страны велика. Ее регионы отличаются широким разнообразием климатических, экономических, географических и других условий, которые играют немаловажную роль в принятии того или иного организационно-технического решения и его реализации. Часть районов Сибири и Крайнего Севера считается малопригодной или вовсе непригодной для проживания людей, однако именно там сосредоточены огромные сырьевые ресурсы, и хозяйственное освоение этих регионов будет продолжаться еще долгие годы. Поэтому для таких районов особую важность и актуальность приобретают технические решения, которые не только могут быть реализованы в сложных климатических условиях, но и направлены на сокращение численности или полное исключение штатного обслуживающего персонала.

В ряду подобных решений стоит и автоматизация гидрометеорологических измерений, значимость которых сама по себе велика для любого региона и всей страны в целом.

К сожалению, гидрометеорологическая сеть в силу общеизвестных объективных и менее известных субъективных причин понесла ощутимые потери: закрываются гидрометеорологические станции и посты, продолжается отток квалифицированных кадров, снижается объем и качество получаемой информации. В условиях оживления экономики отмечается рост потребности в оперативной и режимной (климатологической) информации об окружающей среде, причём спрос не может быть полностью удовлетворён в условиях дефицита персонала гидрометеослужб.

Выход из этой ситуации нужно искать в использовании современных, достаточно широко распространенных, и относительно недорогих технологий автоматизации. Применительно к задачам измерения гидрометеорологических параметров, их обработки и использования результатов как для чисто климатологических, так и для сугубо прикладных хозяйственных целей, это означает внедрение современных датчиков, контроллеров, компьютеров и прикладного программного обеспе-

чения (ПО), реализующего измерительные алгоритмы, статистическую обработку, представление данных в графическом виде и т.д.

Одна из важнейших задач прикладной метеорологии — автоматизация авиационных метеорологических измерений с целью обеспечения практической непрерывности процессов измерения и оперативного отображения результатов на рабочих местах всех участников производственного процесса, планирования и организации авиаперевозок, управления воздушным движением, а также с целью исключения субъективного влияния или воздействия на полученные данные и сам процесс измерения.

По данным Росгидромета (информационное письмо Главной геофизической обсерватории, сентябрь 2000 г.), в России имеется около 400 гражданских аэродромов. Из них 118 аэродромов

них тто аэродромов высших категорий, для которых нормативные требования по оснащению метеорологическим оборудованием особенно высоки и требуют обязательного применения систем автоматического измерения, обработки и представления основных параметров погоды. К таким аэродромам относится и аэродром Надым.

Авиационные перевозки в Ямальском и Обско-Тазовском регионах носят регулярный характер и решают в основном задачи оперативного обеспечения нефтегазового комплекса. На них приходится существенный грузопоток, а часть транспортных операций может быть выполнена только с помощью авиане играют также технологические аэропорты и опера-

тивные вертолетные площадки в вахтовых поселках, пунктах разведки, добычи и подготовки нефти и газа, которые имеют ограниченные возможности для ведения метеонаблюдений как в силу регламента работы (несколько часов в сутки), так и из-за малочисленности персонала. Только применение автоматической измерительной системы с удаленным доступом позволяет круглосуточно получать текущие данные о метеоусловиях, прогнозировать ситуацию и принимать решения о перевозках вахтенных работников и производственных грузов за сотни километров и т.д.

Учитывая значимость авиационного транспорта, а также присущие региону сложные погодно-климатические условия и экономико-географические особенности, трудно переоценить актуальность создания автоматизированной аэродромной метеорологической информационно-измерительной системы (ААМИИС), подобной разработанной нами для аэропорта Надым системе «Ямал».

Построение системы

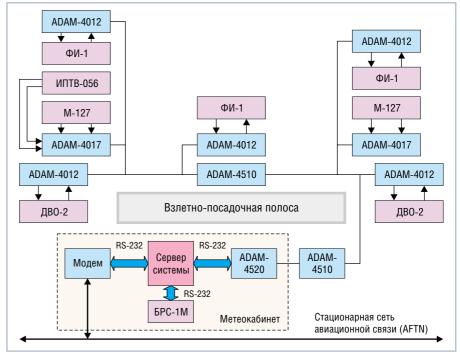
Реализованная метеорологическая измерительная система является многоточечной и распределенной. В качестве базовых устройств использованы модули удаленного сбора данных и управления серии ADAM-4000 фирмы Advantech, основная часть которых предназначена для преобразования унифицированного выходного сигнала метеорологических датчиков в цифровой код, эквивалентный измеряемой величине.

Модули установлены на расстоянии до нескольких десятков метров от соответствующих датчиков и подключены параллельно к двухпроводной линии (витой паре), проложенной вдоль взлетно-посадочной полосы (ВПП). В разрывах линии через определенные рас-

ции. Немалую роль в регионе играют также технологикомплекса региона (вертолетная площадка аэропорта Надым)

стояния включены повторители сигналов ADAM-4510 для компенсации потерь мощности сигнала. Построенная на основе интерфейса RS-485 сеть соединена с ведущим компьютером через преобразователь интерфейса ADAM-4520. Каждый модуль откликается на свой идентификационный номер величиной измеренного метеопараметра и/или информацией о состоянии дискретного ввода-вывода. Функциональная схема системы приведена на рис. 1.

Вообще при первом знакомстве с серией ADAM-4000 возникает мысль, что устройства серии созданы специально для решения задач гидрометеорологических измерений и, в частности, авиационного метеорологического обеспечения. Это является свидетельством не только внутренней общности задач ав-


томатизации в различных отраслях производственно-хозяйственного комплекса, но и правильности подходов фирмы-изготовителя к методам их решения.

Установка датчиков метеопараметров в аэропортах определяется нормативными документами.

В районе ближних приводных радиомаяков аэродрома установлены датчики высоты облачности типа ДВО-2, выходной сигнал которых 0...10

В преобразуется модулем аналогового ввода ADAM-4012 в цифровой эквивалент высоты от 0 до 2000 метров. Первый канал подсистемы дискретного вывода модуля используется для включения/выключения датчика, второй — для включения/выключения обогрева блоков датчика (приемника и передатчика), расположенных вне помещения. Дискретный вход счетчика внешних событий модуля использован для обнаружения преднамеренного несанкционированного воздействия на датчик и помещение, где установлен измерительный блок датчика и сам модуль (рис. 2).

Рядом с первым глиссадным радиомаяком установлены датчик скорости и направления ветра М-127 (завод «Гидрометприбор») и измерительный преобразователь температуры и влажности

Условные обозначения:

ИПТВ-056 — измерительный преобразователь температуры и влажности воздуха; М-127 — датчик скорости и направления ветра; ФИ-1 — датчик видимости; ДВО-2 — датчик высоты облачности; БРС-1М — датчик атмосферного давления.

Рис. 1. Функциональная схема метеорологической измерительной системы «Ямал»

воздуха ИПТВ-056. Эти датчики выдают унифицированный выходной сигнал 0...5 мА, преобразуемый далее в цифровой код 8-канальным модулем аналогового ввода ADAM-4017. Оставшиеся четыре канала модуля можно использовать для

канала модуля мож- Рис. 2. Измерительный блок ДВО-2, модуль АДАМ-4012 и радиомодем

элементарной диагностики датчиков, контроля температуры в помещении и пр. Здесь же установлен датчик видимости типа ФИ-1, его выходной сигнал 0,06...6 В преобразуется модулем ADAM-4012 в цифровой эквивалент метеорологической оптической дальности видимости от 60 до 6000 метров. Второй датчик ФИ-1 с модулем ADAM-4012 установлен на уровне середины взлетно-посадочной полосы (ВПП). В районе второго глиссадного маяка установлены третий датчик видимости с модулем ADAM-4012 и второй датчик параметров ветра с модулем ADAM-4017. Первые дискретные выходы модулей ADAM-4012 используются для включения/выключения датчиков, вторые — для переключения их измерительной базы (ближняя/даль-

Датчик атмосферного давления БРС-1М расположен на рабочем месте метеоролога и подключен к IBM PC совместимому компьютеру через порт RS-232. При необходимости его можно включить в измерительную сеть через адресуемый преобразователь интерфейса RS-232/RS-485 ADAM-4521.

Измеряемые и расчетные метеорологические параметры

Стандартный набор датчиков обеспечивает измерение текущих мгновенных значений следующих метеопараметров:

- температура воздуха;
- температура поверхности почвы;
- атмосферное давление;
- относительная влажность воздуха;
- скорость и направление ветра;
- высота нижней границы облачности (ВНГО);
- метеорологическая оптическая дальность видимости (МОДВ).

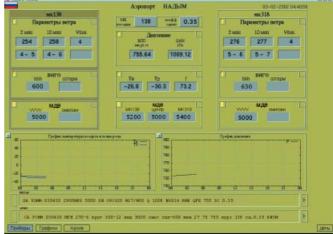
На основе измеренных значений параметров компьютер выполняет расчеты:

 давления на уровне ВПП и на уровне моря;

- максимальной и минимальной температур воздуха за трехчасовой интервал между синоптическими сроками;
- характеристик влажности (абсолютная влажность, упругость водяного пара, температура точки росы) в синоптический срок;
- скорости и направления ветра (значения мгновенные и осредненные за 2 минуты и 10 минут);
- «скользящий» максимум скорости ветра за 2 минуты и 10 минут и максимум за период между синоптическими сроками;
- ортогональной к ВПП составляющей скорости ветра;
- величины и характеристики барометрической тенденции;
- ВНГО со «скользящим» выбором второго минимума из каждых измеренных за 2 минуты с интервалом 15 секунд значений;
- дальности видимости огней малой и высокой интенсивности;
- максимальной и минимальной температур воздуха между синоптическими сроками;
- максимальной и минимальной температур поверхности почвы между синоптическими сроками.

Программное обеспечение

Система «Ямал» представляет собой


программно-аппаратный комплекс, предназначенный для сбора, обработки, хранения метеорологической информации, ее представления в нормативном виде в органы управления воздушным движением, в службы авиаперевозок обслуживаемых организаций, в местные мубы и федеральные метеоизмерений метеорологические органы. Программное обеспечение комплекса выполняется под управлением операционной системы Linux и разработано по технологии клиент/сервер, что позволяет применить многопользовательский режим работы. ПО включает в себя шесть взаимосвязанных программных блоков:

- считывания и обработки аналоговых сигналов, поступающих от датчиков на модули ADAM (модули ADAM опрашиваются через адаптер RS-232/RS-485);
- обработки данных от датчиков с цифровым выходом, подключенных непосредственно к СОМ-портам компьютера;
- передачи синоптических телеграмм по каналам связи;
- передачи метеорологических данных с помощью телефонного модема по факсу или голосом по утвержденному списку телефонов заказчиков;
- синхронизации и архивирования (обеспечивается привязка всей поступающей информации к текущему времени и занесение обработанной информации в архив);
- WEB-сервер для доступа к метеоданным по Internet/Intranet.

Программное обеспечение сервера позволяет быстро перестраиваться в случае отказа приборов или датчиков. Все настройки контроллеров серии ADAM-4000 выполняются с помощью поставляемых с ними в комплекте программ конфигурации.

Особое место в ПО измерительной системы занимает программное обеспечение клиента (программа визуализации).

Программа визуализации запускается на сервере автоматической системы, отображает всю информацию от датчи-

ниципальные служ- Рис. 3. Экранная форма программы визуализации результатов

Рис. 4. Метеорологическая площадка

ков в цифровом и графическом виде (рис. 3), осуществляет доступ к архиву, формирует и отправляет синоптические телеграммы, обеспечивает передачу по сети Ethernet видеоизображения на клиентские терминалы.

По каналу связи в компьютер поступают регулярно обновляемые данные о фактической и прогнозируемой погоде аэропортов региона, прогнозы по площадям и другая оперативная информация. Можно предположить, что в ближайшем будущем по радиоканалу обмена данными «земля — борт» метеоинформация экипажам будет сообщаться по запросу автоматически, без промежуточных этапов.

Особенности реализации системы в аэропорту Надым

Из перечисления измеряемых и рассчитываемых параметров погоды видно, что система выполняет и другие функции, не свойственные стандартной аэродромной метеорологической измерительной системе. Это связано с тем, что метеостанция аэродрома Надым организационно включает в себя и федеральную метеостанцию (на рис. 1 не показана), поэтому на специально отведенной метеоплощадке (рис. 4) измеряются дополнительно температура и относительная влажность воздуха датчиком HMP-45 фирмы Vaisala и температура почвы датчиком ТСП 9201 (завод «Эталон»). Термопреобразователи работают с модулями ADAM-4013, отличающимися высокими метрологическими характеристиками, а выходное напряжение 0...1 В датчика влажности преобразуется модулем АДАМ-4012 в код, соответствующий значению из диапазона 0...100 процентов. Следует отметить, что модули серии АДАМ-4000 предназначены для использования при температурах от -10 до +70°C, поэтому на метеоплощадке они установлены в термостатируемые на уровне 25°C конструктивы (рис. 5). Остальные устройства расположены в отапливаемых помещениях.

Другая особенность. Стоимость аренды одной физической пары длиной от 1000 до 1500 метров в аэропорту Надым на 01.01.2002 составляет 1956,4 руб-

лей. Вариант подключения всех устройств к одной паре при имеющейся конфигурации проводной связи реализовать невозможно, минимально необходимое количество пар -10. Построение системы на основе интерфейсных модулей ADAM позволило уменьшить это число до 6, то есть сократить прямые затраты с 19564 до 11738,4 рублей в месяц. Кроме того, в ходе работы над проектом нами принят и успешно реализован вариант построения системы с использованием радиомодемов «Невод» для организации резервных, а в перспективе, может быть, и основных каналов связи с датчиками, вернее — с группами датчиков. Антенна базового модема — коллинеарная, остальные —

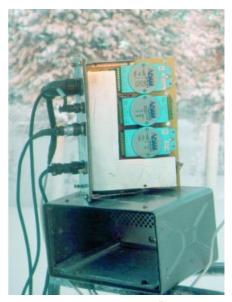


Рис. 5. Аппаратура федеральной метеостанции на базе модулей ADAM и термостатируемый конструктив

5-элементные, типа «волновой канал» (рис. 6).

В пользу применения радиомодемов можно привести весомые эксплуатационно-технические аргументы, особенно для систем, реализуемых в условиях северных территорий и зон вечной мерзлоты. Однако в зависимости от

конкретных местных условий более приемлемым может оказаться смешанный вариант (и радиомодемы, и проводная связь) — такой вариант построения системы нами также опробован наряду с описанной системой, использующей только проводную связь.

Что дальше?

Как уже было показано, проблема автоматизации гидрометеорологических наблюдений чрезвычайно актуальна. Однако она до сих пор концептуально не сформулирована, и сейчас мы имеем то, что имеем: на всем огромном пространстве нашей страны от Балтики до Тихого океана, на Кавказе и Урале, в сибирской и дальневосточной тайге, на Колыме и Камчатке, на побережье и островах Северного Ледовитого океана через каждые три часа в любую погоду метеорологи (в основном женщины) выходят на метеоплощадки, снимают показания приборов, составляют синоптическую телеграмму и передают ее в соответствующий территориальный центр. Бурный научно-технический прогресс последних десятилетий слабо отразился на оснащенности федеральной сети метеостанций, и некоторые приборы и методы измере-

Рис. 6. Антенна, используемая для передачи данных по радиоканалу

ний остались неизменными с позапрошлого века.

Такая ситуация нетерпима; связанные с нею проблемы особенно остро проявляются на арктических станциях, где зимовка длится не менее года, не вписывается ни в какие юридические рамки, является реликтом уходящей эпохи и социальной аномалией. Стоимость 50 тонн дизельного топлива (годовая потребность), завозимого (часто с ледокольным сопровождением, а в авральных ситуациях — и вертолетами) на труднодоступную арктическую станцию со стандартной программой наблюде-

ний, при цене сырой нефти 20 долларов за баррель составит сумму 25...30 тысяч долларов ежегодно. Плюс расходы на оборудование, зарплату, продукты питания, смену персонала и пр. — и все это из федерального бюджета, и средства эти немалые. Отметим также, что метеостанции, доступ к которым затруднен, есть не только в Арктике. Выход из сложившейся ситуации один — внедрение сети автоматических гидрометеорологических станций (АГМС), автономных, необслуживаемых или обслуживаемых, допустим, один раз в год для проведения профилактических работ.

В настоящее время при большом выборе различных контроллеров, одноплатных и однокристалльных компьютеров, микроконверторов и приемлемом качестве датчиков нет неразрешимых проблем для создания АГМС. Наиболее быстро, оперативно и с минимальными затратами, на наш взгляд, эту задачу можно решить с использованием модулей серии ADAM. Для этого достаточно взять модули ADAM-4013 для точного измерения температуры, ADAM-4017 для преобразования токовых сигналов датчиков, в качестве контроллера сети и связи использовать управляющий модуль ADAM-4500, для синхронизации обмена данными по радиоканалу — адресуемый двунаправленный модуль интерфейса с радиомодемом ADAM-4530. К слову, стоимость четырех перечисленных изделий на 19.01.2001 составляла \$925,6, включая НДС. Температурные коэффициенты смещения нуля и диапазона можно практически скомпенсировать заглублением контейнера с контроллерами и датчиком атмосферного давления в грунт на уровень несколько ниже горизонта протаивания (если станция устанавливается в зоне вечной мерзлоты), где температура держится в пределах -2...-4°С (обычно это 1,5...2 метра).

Практически по этой же схеме (рис. 1) с возможностью отображения информации по запросу на компьютерах технологических служб и адресной автоматической передачей данных (в том числе, в территориальные органы Росгидромета) выполняются автоматические станции для технологических вертолетных площадок и вахтовых поселков в местах добычи нефти и газа.

В составе серии ADAM-4000 есть также восьмиканальный регистратор аналоговых сигналов ADAM-4018M с 16-разрядным АЦП, 128 кбайт флэш-ПЗУ для 38000 отсчетов и регулируе-

На здании командно-диспетчерского пункта аэродрома Надым установлена базовая коллинеарная антенна и спутниковые антенны для приема метеоинформации; в этом же здании располагается метеокабинет

мым от 2 секунд до 18 часов интервалом между соседними отсчетами — для посвященных в проблему автоматизации измерений эти данные звучат как завораживающая мелодия! Такой модуль — незаменимая принадлежность для регистрации режимных измерений, в том числе в экспедиционных и полевых условиях. Наконец, трудно удержаться от рекомендаций по использованию в федеральной метеорологической сети устройств сбора данных и управления серии ADAM-5510. Это практически готовое решение как для автоматической, так и полуавтоматической (обслуживаемой) метеостанции с полной программой измерений.

Открытым в настоящее время является вопрос с некоторыми датчиками.

Но суть проблемы, как нам кажется, - в отсутствии у потенциальных производителей информации о том, что нужно потребителям. Например, за фундаментальные работы по квантовой электронике нашим ученым присуждены две Нобелевские премии, у нас имеются десятки научных, проектных организаций, заводов, разрабатывающих и выпускающих соответствующую спецтехнику, но до сих пор нет лазерных измерителей высоты нижней границы облаков. В соседней Финляндии нет лауреатов, на порядки меньше людей и организаций заняты этой проблемой, но фирма Vaisala выпускает такие измерители и продает их, в том числе и в нашу страну. Короче говоря, нужны новые, современные датчики метеорологических и гидрологических величин, нужна глубокая модернизация тех первичных преобразователей, в которых используемый метод измерения не потеряет актуальности в обозримом будущем.

ЗАКЛЮЧЕНИЕ

Очевидно, что построение автоматической метеостанции любого назначения с использованием промышленных контроллеров обладает значительными преимуществами. Реализация многих из этих преимуществ становится возможной благодаря модулям и контроллерам серии ADAM. В комплект поставки контроллеров входит, как правило, прикладное ПО, позволяющее их конфигурировать на месте, применительно к конкретной задаче. Выпущено и продолжает выпускаться ПО, облегчающее построение автоматических измерительных систем различной степени сложности, легко перенастраиваемых аппаратно и программно, простых в монтаже и эксплуатации.

Нелишне упомянуть и наличие в современных контроллерах цепей подавления выбросов напряжения и защиты от перегрузки — это увеличивает их на-

дежность в условиях наводок и электромагнитных помех повышенной интенсивности, генерируемых при работе радионавигационного оборудования аэропортов. Реализованная нами система «Ямал» может быть повторена в условиях территориальных органов Росгидромета, крупных авиаметеостанций. Системе не требуются выделенные линии связи для каждого датчика и специализированные модемы для передачи информации от датчиков к обрабатывающему компьютеру. Возможно (где это необходимо и целесообразно) применение радиомодемов, со стандартными интерфейсами, легко сопрягаемых с контроллерами. Система обладает большой гибкостью, она легко конфигурируется в зависимости от назначения и места эксплуатации, будь то технологический аэропорт Харасасавэй, или оперативная площадка Бованенково на севере полуострова Ямал, или аэропорт международного класса с несколькими взлетно-посадочными полосами в обжитой части страны.

Авторы — сотрудники Авиаметеорологической станции Надым Телефоны: (34995) 454-89, 454-99 Телефон/ факс: (34995) 490-04